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Abstract

This paper describes a new algorithm, named the Sensitive Pole Algorithm, for the auto-
matic computation of the eigenvalues (poles) most sensitive to parameter changes in large-scale
system matrices. The effectiveness and robustness of the algorithm in tracing root-locus plots
is illustrated by numerical results from the small-signal stability analysis of realistic power
system models. The algorithm can be used in many other fields of engineering that also study
the impact of parametric changes to linear system models.

1 Introduction

The transient response of a closed-loop linear system is strongly related to the location of the
closed-loop poles, which depends on the value of the loop gain. It is therefore important for the
designer to know how the closed-loop poles move in the s-plane as the loop gain (or any other
relevant control loop parameter) is varied [23, 13]. The closed-loop poles are the eigenvalues of
the system state matrix. The classical root-locus method is a graphical method that enables the
designer to trace the closed-loop poles trajectories from the open-loop poles and zeros as the loop
gain is changed [23], and helps to understand the effect of feedback and compensation on the
closed-loop poles. The classical graphical method was intended for small system models, and has
long been superseded by the direct trace of the root-locus plots by repeated application of the QR
eigenvalue method [7] for a sequence of parametric changes. Since the tracing of root-loci requires
repeated computation of the poles, and the system matrices can be very large, there is need for
efficient eigenvalue methods. In this paper, the Sensitive Pole Algorithm (SPA) is presented for
the computation of the most sensitive poles of large-scale systems.

Frequency response techniques are much employed in power system oscillation damping control
[12, 15, 27, 26, 2, 14, 19, 17, 5, 16, 4, 3, 1, 32] and have the advantage of allowing verification
through generator and excitation control field tests. Modal analysis (shapes, participations),
transfer function pole residues, root-locus plots, and time response to a pulse or step, have also
been extensively used for placing and tuning of power system stabilizers (PSSs), as well as for
Power Oscillation Damping (POD) controllers that have been added to HVDC links and FACTS
devices. The coordinated PSS design considering multiple operating scenarios, may be carried
out much more automatically when employing the methods in [26, 5]. The design methods in
[26, 5] would also greatly benefit from the availability of an efficient eigenvalue method to trace
multi-parameter root-locus plots, becoming then applicable to large-scale power systems.

Detailed stability models for the North American eastern interconnection easily reach 25,000
states [16, 33], and are far too large to have their full eigensolution produced by a QR routine
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[7] (since the computational (memory) costs depend cubically (quadratically) on the number of
states). The much smaller Brazilian interconnection (BIPS) model currently has already more
than 3,000 states, and its full eigensolution by the QR method requires about 10 minutes of CPU
time on a powerful PC. The use of the QR method to trace root-locus plots, requiring thirty or
more eigensolutions per set of parameters being changed, is therefore even for the moderately-sized
BIPS model not a practical alternative. Obtaining rough traces of some critical root-locus branches
of large power system models, using existing partial eigensolution methods that are not focused
into this specific problem, can be very laborious [17, 5] and leads to barely acceptable results.
A sparse eigenanalysis method that could efficiently compute the set of most sensitive poles for
single or multiple parameter changes is therefore of high interest to power system dynamics and
control as well as to other areas of engineering.

The Sensitive Pole Algorithm (SPA) presented in this paper is a new method for the com-
putation of the poles most sensitive to parametric changes. Because it operates on the sparse
descriptor matrices of the system (having a set of differential-algebraic equations) and computes
the most sensitive poles automatically, it is very useful in root-locus studies of large-scale systems.
The authors are not aware of any other eigensolution method, applicable to large-scale systems,
for the computation of the most sensitive eigenvalues specifically. The robust performance of SPA
is illustrated by numerical experiments with realistic power system models.

The outline of the paper is as follows. In Section 2 an overview of transfer function poles,
eigenvalue problems, and eigenvalue derivatives is given. The Sensitive Pole Algorithm (SPA) is
described in Section 3. Applications of SPA to large-scale practical power system models, showing
the effectiveness and robustness of the SPA, are presented in Section 4. Section 5 concludes.

2 Transfer function poles, eigenvalues, and derivatives

The motivation for this paper comes mainly from dynamical systems (E, A, B, C, D), that are of
the form

{

Eż(t) = Az(t) + Bu(t)
o(t) = C∗z(t) + Du(t),

(1)

where A, E ∈ Rn×n, E singular, B ∈ Rn×m, C ∈ Rn×p, z(t) ∈ Rn is the state vector, u(t) ∈ Rm

is the input vector, o(t) ∈ Rp is the output vector, and D ∈ Rp×m. The corresponding transfer
function H : C −→ Cp×m is defined as

H(s) = C∗(sE − A)−1B + D, (2)

with s ∈ C. If m = p = 1, the system (1) is called a single-input single-output (SISO) system.
If m, p > 1, system (1) is called a multi-input multi-output (MIMO) system. Throughout this
paper, M∗ denotes the complex-conjugate transpose of a matrix M .

The eigenvalues λi ∈ C of the matrix pencil (A, E) are the poles of transfer function (2).
Assuming that the pencil is nondefective, the right and left eigenvectors xi and yi corresponding
to finite eigenvalues λi can be scaled so that y∗

i Exi = 1. Furthermore, right and left eigenvectors
corresponding to distinct eigenvalues are E-orthogonal: y∗

i Exj = 0 for i 6= j. The transfer function
H(s) can be expressed as a sum of residue matrices Ri ∈ C

p×m over finite first-order poles [11]:

H(s) =

ñ
∑

i=1

Ri

s − λi

+ D,

where the residues Ri are
Ri = (C∗xi)(y

∗

i B),

ñ ≤ n is the number of finite first-order poles, and the contribution of poles at infinity is assumed
to be zero.

Let p ∈ R be a parameter (e.g., gains or time constants of PSSs and PODs), and let A(p) and
E(p) be matrices that depend on p. It is well known that the derivative of an eigenvalue λ of the
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pencil (A(p), E(p)), with left and right eigenvectors y ≡ y(p) and x ≡ x(p), to a parameter p is
given by [21, 9]

∂λ

∂p
=

y∗(∂A
∂p

− λ∂E
∂p

)x

y∗Ex
. (3)

The derivative (3) is usually called the sensitivity (coefficient) of λ. Note that the sensitivity of an
eigenvalue can be real or complex, depending on whether the corresponding eigenvectors are real
or complex. In the remainder of this paper it is assumed that ∂E

∂p
= 0 (except for Section 3.4). In

that case, with y and x scaled so that y∗Ex = 1, the eigenvalue derivative (3) becomes

∂λ

∂p
= y∗

∂A

∂p
x. (4)

The larger the magnitude of the derivative (4), the more sensitive eigenvalue λ is to changes in
parameter p. It is therefore instructive to view the problem of computing the most sensitive poles
in a similar way as the problem of computing the most dominant poles (λi with large ‖Ri‖2), which
is solved by the Dominant Pole Algorithm [20, 29, 28]. In the following section the convergence
to the most sensitive poles by the Sensitive Pole Algorithm is explained by its striking similarities
(and in some cases even equivalence) to the Dominant Pole Algorithm.

3 The Sensitive Pole Algorithm

The Sensitive Pole Algorithm (SPA) is explained by considering the single parameter case first
(Section 3.1). In Section 3.2, SPA is generalized to the multiple parameter case. To improve
global convergence, SPA is extended with subspace acceleration in Section 3.3. The case ∂E

∂p
6= 0

is discussed in Section 3.4.
It is stressed that SPA is not an algorithm to compute just the sensitivities of eigenvalues,

since these can readily be computed with the eigenvalues and corresponding left and right eigen-
vectors found by several methods, provided the matrix derivatives are available, see also, e.g., [6].
Eigenvalue sensitivity applied to power system dynamics and control is a topic on its own right,
used in the design of many power system controllers [33, 18, 31, 24, 22, 34]. The sensitivities that
have been used by engineers include: all controller parameters in power generators, HVDC links
and FACTS devices, that impact relevant system dynamics [31]. The Sensitive Pole Algorithm
is really intended for the computation of only those eigenvalues of large scale systems that are
most sensitive to parameter changes. Tracing root-locus plots for parameter changes in controllers
of critical equipment [27, 26, 14, 17], aiding the gain coordination of power oscillation damping
controllers [26, 5], and determining parametric stability margins [35, 8], are some of the many
potential applications of this method.

In the following A(p) is denoted by just A, for the sake of brevity and clarity, and a similar
convention is followed for the eigenvalue λ ≡ λ(p) and the left and right eigenvectors y ≡ y(p)
and x ≡ x(p), respectively. For ease of notation, it is assumed in Sections 3.1—3.4 that A and E
depend linearly on the parameter(s). Section 3.5 comments on nonlinear parameter dependency.

3.1 A single parameter

Suppose that the derivative of A to parameter p has rank 1 and hence can be written as

∂A

∂p
= bc∗, (5)

where b, c ∈ Rn are vectors (not related to B and C in (1)). Then the sensitivity of an eigenvalue
λ with left and right eigenvectors y and x (with y∗Ex = 1) becomes

∂λ

∂p
= y∗

∂A

∂p
x = (y∗b)(c∗x) = (c∗x)(y∗b). (6)
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In the right-hand side of (6) one recognizes the residues of the transfer function H(s) = c∗(sE −
A)−1b. Consequently, the most sensitive eigenvalues of the pencil (A(p), E) can be computed by
applying the Dominant Pole Algorithm [20] to (E, A,b, c), with b and c defined by (5).

If rank(∂A
∂p

) = k > 1, the derivative of A to p can be written as

∂A

∂p
=

k
∑

i=1

bic
∗

i , (7)

where bi, ci ∈ Rn (i = 1, . . . , k). The sensitivity of an eigenvalue λ with left and right eigenvectors
y and x (with y∗Ex = 1) becomes

∂λ

∂p
= y∗

∂A

∂p
x =

k
∑

i=1

(y∗bi)(c
∗

i x).

Similar to the rank 1 case, the algorithm for computing the most sensitive poles follows from
relating the sensitivities to the residues of a transfer function. To be more precise, consider the
MIMO system (E, A, B, C), where

B = [b1,b2, . . . ,bk],

C = [c1, c2, . . . , ck],

have as their columns the bi and ci (i = 1, 2, . . . , k), respectively. The residues of the corresponding
transfer function H(s) = C∗(sE − A)−1B are defined by

Ri = (C∗xi)(y
∗

i B),

where the left and right eigenvectors yi and xi are scaled so that y∗

i Exi = 1. It follows that the
sensitivity of eigenvalue λ with eigenvectors y and x is given by

∂λ

∂p
= y∗

∂A

∂p
x =

k
∑

i=1

(y∗bi)(c
∗

i x) = trace(R), (8)

where R = (C∗x)(y∗B) has rank k, and the trace of an n × n matrix A is defined by trace(A) =
∑n

i=1
aii. With the index for dominance defined by |trace(Ri)|, the most sensitive eigenvalues of

(A, E) could in principle be computed by SAMDP [28] (with adapted selection criterion) as the
most dominant poles (according to (8)) of (E, A, B, C). However, the Sensitive Pole Algorithm,
presented in Alg. 1, exploits the freedom in SAMDP for the choice of the right-hand sides in step
5 and 6 (see Section IV.B in [28]): in iteration k, use the new information (i.e., left and right
eigenvector approximations wk and vk) to update the right-hand sides

b =
∂A

∂p
vk = B(C∗vk) and c =

∂A

∂p

∗

wk = C(B∗wk). (9)

These updates are motivated as follows. To compute the most sensitive eigentriplet (λ,x,y), i.e.,

the eigenvalue with largest sensitivity y∗ ∂A
∂p

x, one would ideally take b = ∂A
∂p

x and c = ∂A
∂p

∗

y. In
that case, b and c are fixed and SPA boils down to DPA, which converges to the dominant poles
[30], i.e. , the poles with largest residues R = (c∗x)(y∗b) = (y∗ ∂A

∂p
x)2 (see also [10]), which in

turn are the most sensitive eigenvalues. However, the unknown eigenvectors y and x are exactly
the ones looked after. Hence, in iteration k, the approximations wk and vk of left and right
eigenvectors y and x, respectively, are the most obvious choices in (9), see also step 3 and 4 of
Alg. 1. The initial vectors v0 and w0 should be chosen such that Apv0 6= 0 and A∗

pw0 6= 0, where

Ap = ∂A
∂p

(cf. step 1 of Alg. 1); if none of the row and column sums of Ap are zero, a practical

choice is v0 = w0 = [1, . . . , 1]T ∈ Rn (also random initial vectors will do in practice).
Note that the matrices B and C need not to be computed explicitly for SPA (but could be

determined by computing the (thin) SVD [7] of ∂A
∂p

). If ∂A
∂p

has rank one, SPA boils down to DPA,
as described in the beginning of this section.

Matlab code for SPA is given in the Appendix, together with numerical results on a small
example that illustrate the behavior of SPA.
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Algorithm 1 Sensitive Pole Algorithm (SPA)

INPUT: Pencil (A, E), Ap ≡ ∂A
∂p

, initial pole estimate s0, tolerance ǫ ≪ 1
OUTPUT: Approximate sensitive pole λ and corresponding right and left eigenvectors x and y

1: Set k = 0, v0,w0 ∈ Rn s.t. Apv0 6= 0 and A∗

pw0 6= 0
2: while not converged do

3: b = Apvk/‖Apvk‖2

4: c = A∗

pwk/‖A∗

pwk‖2

5: Solve vk+1 ∈ Cn from (skE − A)vk+1 = b

6: Solve wk+1 ∈ Cn from (skE − A)∗wk+1 = c

7: Compute the new pole estimate

sk+1 = sk −
c∗vk+1

w∗

k+1
Evk+1

8: The pole λ = sk+1 with x = vk+1/‖vk+1‖2 and y = wk+1/‖wk+1‖2 has converged if

‖Ax − sk+1Ex‖2 < ǫ

9: Set k = k + 1
10: end while

3.2 Multiple parameters

If A ≡ A(p1, p2, . . . , pk) depends on multiple parameters p1, . . . , pk, the derivative (gradient) of λ
is composed of the partial derivatives:

∇λ = (y∗
∂A

∂p1

x, . . . ,y∗
∂A

∂pk

x).

To measure the sensitivity in a unit direction d ∈ Rk, that is, when changing parameter pi by di,
the directional derivative is used:

sensitivity(λ,d) ≡ |∇λ · d|.

Since

∇λ · d =

k
∑

i=1

diy
∗
∂A

∂pi

x = y∗Apx,

where

Ap =
k

∑

i=1

di

∂A

∂pi

, (10)

SPA (Alg. 1) can be used to compute the eigenvalues of (A, E) most sensitive to changes in multiple
parameters as well (with Ap as in (10), cf. steps 3 and 4 in Alg. 1).

In practical applications the entries of d are typically equal to the increments of the corre-
sponding parameters (see Section 4.2 for an example from practice).

3.3 Subspace acceleration and deflation

To improve global convergence, SPA can be extended with subspace acceleration. The ingredients
(search spaces, selection strategy, deflation) of the resulting Subspace Accelerated Sensitive Pole
Algorithm (SASPA) are discussed briefly here. See [29, 28] for more details, including full code
for Matlab, on subspace acceleration in the context of computing dominant poles.

The main idea behind subspace acceleration is that the approximate eigenvectors vk+1 and
wk+1 (step 5 and 6 of Alg. 1) are kept in search spaces V and W , respectively. In the k-th iteration,
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this leads to a projected eigenproblem (W ∗AV, W ∗EV ) of order k ≪ n. This small problem can
be solved exactly using the QZ method [7], leading to k approximate eigentriplets of (A, E). Of
these triplets, the most sensitive is selected, and the corresponding eigenvalue approximation is
used as shift for the next iteration.

If an approximate eigentriplet (λ,x,y) satisfies the convergence criterion ‖Ax − λEx‖2 < ǫ
(with ǫ ≪ 1), deflation is used to avoid convergence to this eigentriplet again: the search spaces V
and W are kept orthogonal to E∗y and Ex, respectively, during the computation of other sensitive
eigenvalues. In practical root-locus studies involving particular generator controllers, the number
of sensitive eigenvalues of interest is often very low (< 5), and their approximate location is known.
However, in coordinated tuning of power oscillation damping controllers [26, 5, 35] in large power
systems, the number of poles of interest may easily jump to 50 or more. If this information is not
known in advance, a dynamic criterion can be to continue computation of sensitive poles until the
relative difference in sensitivity between new poles and already found poles is above some value.

3.4 The case ∂E
∂p

6= 0

If the matrix E depends on a parameter p as well, the derivative of λ is given by

∂λ

∂p
=

y∗(∂A
∂p

− λ∂E
∂p

)x

y∗Ex
. (11)

The descriptor formulation in [31] utilizes sensitivity formula (11) in the design of HVDC damping
controllers. Accordingly, the application of the SPA algorithm to such formulation would need to
be based on (11) to effectively produce root locus plots. The presence of the (unknown) λ in the
derivative (11) requires an update every iteration similar to the update for the case rank(Ap) > 1
(described in Section 3.1). Besides the eigenvector approximations wk and vk (cf. step 3 and 4 of
Alg. 1), now also the eigenvalue estimate sk is used to update Ap every iteration (between step 2
and 3 in Alg. 1):

Ap =
∂A

∂p
− sk

∂E

∂p
.

In the multiple parameter case the update becomes

Ap =

k
∑

i=1

di

(

∂A

∂pi

− sk

∂E

∂pi

)

.

3.5 Nonlinear parameter dependency

If A(p) (and/or E(p)) depends nonlinearly on parameter p, (SA)SPA can still be applied. Since
the parameter p is present in the derivative of A(p) (and of E(p)), the derivative needs to be
evaluated at the present parameter value p = p0:

Ap =

(

∂A

∂p
− sk

∂E

∂p

)∣

∣

∣

∣

p=p0

.

This generalizes readily to the multiple parameter case. Note that for the case ∂E
∂p

= 0, the

derivative Ap needs to be computed only once per parameter value; in the case ∂E
∂p

6= 0, the
derivative Ap needs to be updated every iteration between step 2 and 3 of Alg. 1.

In power system dynamics, a general first-order block is of the form (K +sL)/(M +sN), where
L and N are time constants. A nonlinear term in N occurs in one or more coefficients of the state
(descriptor) matrix as well as in its derivative with respect to N . To analyze the robustness of
generator controllers, such as automatic excitation systems, speed-governors and power system
stabilizers (PSSs), to changes in many different parameters, the formulations described in this
section and Sections 3.2 and 3.4 may need to be combined.
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Table 1: Sensitive poles for p = a116,115 = 1 (see Fig. 3).

pole y∗ ∂A
∂p

x symbol hits SPA hits RQI

−22.1 + 4.64i −1.24 + 2.00i x 48% 35%
−5.37 + 5.64i +0.10 + 1.23i circle 23% 4%
+0.53 + 5.41i −0.13 + 0.02i square 7% 3%
−1.28 + 4.37i −0.04 − 0.11i * 1% 3%

Many of the linear state matrix coefficients are nonlinear functions of the system power flow
parameters. Determining the state matrix derivative with respect to changes in the system op-
erating point is a topic of current interest but never a trivial task [33, 31, 22, 34, 35]. Using
approximations of this derivative was proposed in [33, 34] and this might be suitable for use in
online SPA implementations.

4 Numerical results

This section describes numerical results related to the small-signal stability analysis of power
systems. First, the ability of (SA)SPA to find the most sensitive poles is illustrated by results
obtained for a 41-state model of a 5-machine power system. Second, SASPA is used to compute
root-locus plots for large-scale practical power system models. It is shown that SASPA is more
efficient and more robust compared to existing methods.

All experiments were carried out in Matlab 7 on a MacBook Pro (2GHz Intel Core Duo, 1 GB
RAM). Unless stated otherwise, all computations were done with sparse descriptor realizations.
The dashed line in some figures denotes the 5% damping ratio border. In all experiments, initial
vectors were chosen as v0 = w0 = [1, . . . , 1]T ∈ Rn (cf. step 1 of Alg. 1).

4.1 41-State power system

The descriptor realization of this 41-state system has dimension n = 136. The small sizes of the
state space and descriptor realizations allows for the intensive dense computations that are needed
to confirm the results obtained by SASPA, and for extensive comparison with other methods.

The power system stabilizer gain (Kpss) for one generator in this 5-machine power system can
be controlled by element a116,115 of the descriptor matrix1. Figure 1 shows the spectrum of (A, E)
with Kpss = a1

116,115 = 1 (squares, only showing finite eigenvalues), together with the spectra for

(Aj , E) (asterisks), where
aj
116,115 = j, (j = 2, . . . , 50).

This gives a clear indication of the most sensitive poles with respect to changes of a116,115. The
four most sensitive poles and their derivatives are also listed in Table 1, together with symbols used
in the Figures 3–4. Figure 1 was obtained by calling the QZ method (eig(Aj ,E) (j = 1, . . . , 50))
in Matlab (within 4 s CPU time).

The derivative of A to Kpss is given by Ap = e116e
T
115, where ei is the i-th elementary vector.

This means that computing the sensitive poles with (SA)SPA is equivalent to computing the
sensitive poles with (SA)DPA [29] as the dominant poles of (E, A,b, c), where b = e116 and
c = e115. Figure 2 shows for (Aj , E) (j = 1, . . . , 50) the six sensitive poles computed by SASPA,
using initial shift s0 = 1i for every run. Despite the naive choice for s0, SASPA succeeds in
tracing the most sensitive poles (cf. Fig. 1), showing the robustness of SASPA. As was confirmed
by numerical experiments (not reported here), the very sporadic convergence to a less sensitive
pole can be fixed by using as initial shifts for SASPA(Aj , E) the poles found by the previous run
SASPA(Aj−1, E). SASPA required 40 s CPU time, against 4 s for eig. However, due to the small
system size, the costs for SASPA are dominated by overhead of keeping search spaces. For larger

1Row 116 contains the algebraic equation −out(t) + Kpss ∗ in(t) = 0, with variables ’in’ (for input to a gain
block) and ’out’ (for output of the gain block) ordered as 115 and 116, respectively, in the augmented state vector.
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Figure 1: Full spectra of the 41-state power system matrices (Aj , E), where aj
116,115 = j (j =

1, . . . , 50), computed by the QZ method.
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Figure 2: Sensitive pole traces for (Aj , E), where aj
116,115 = j (j = 1, . . . , 50), computed by SASPA

with s0 = 1i (six poles every run).
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Figure 3: Sensitive pole convergence areas for SPA applied to the 41-state system with PSS gain
a116,115 = 1, see also Table 1.

systems SASPA is faster than eig (QR/QZ method), as is confirmed by results in Section 4.2
(moreover, SASPA is applicable to large-scale systems, while the QR/QZ method is limited to
systems of dimension O(103)).

In Fig. 3 convergence areas for the most sensitive poles of (A1, E) as obtained for SPA are
displayed (note that the same results would be obtained for DPA applied to H(s) = c∗(sE−A)−1b,
with b = e116 and c = e115, see the last part of Section 3.1). Fig. 4 shows the convergence areas
obtained for two-sided RQI [25]. These figures should be interpreted as follows: a symbol at point
(x, y) in the complex plane means that the respective method (SPA/RQI) started with s0 = x+ iy
and converged to the pole corresponding to the symbol in Table 1 (for instance, an x means
convergence to −22.1 ± 4.64i in Table 1). Grid points without symbol denote convergence of
the respective method to a less sensitive pole. Hence, the more x-es and circles, the better the
performance of the method. Clearly, for SPA the convergence areas of the most sensitive poles
are much larger, confirming its effectiveness and robustness (cf. the corresponding percentages in
Table 1). Since two-sided RQI has an asymptotically cubic rate of convergence, against quadratic
for SPA, the average number of iterations needed for convergence (ǫ = 10−12) is lower for RQI
(6.8 iterations against 9.8 for SPA), but SPA converges to poles that are more sensitive.

To summarize, these results show that SASPA is able to compute and trace the most sensitive
poles in an effective and robust way, even without using a clever tracing strategy.

4.2 Large-scale power system I (1664 states)

The large system is a 1997 planning model for the Brazilian Interconnected Power System (BIPS/97)
[17, 4, 29, 28]. The state-space realization has 1664 states, and the descriptor realization is of order
n = 13250.

In the first experiment the PSS gain (Kpss) of the Xingó generator (a4971,4970) is varied between
0 and 30, with increments of 0.5. Figure 5 shows the traces for the most sensitive poles as computed
by SASPA (computing 10 poles per run, initial shift s0 = 3i). The CPU time for the 60 runs was
1450 s. A root-locus plot for all poles (Fig. 6) was produced by using the QR method for the
state-space matrix, needing 7800 s (only computing eigenvalues). The sensitive poles are those that
significantly shift with PSS gain, yielding the same critical root-locus branches that were tracked
by the SASPA method, cf. Fig. 5. Clearly, SASPA is much faster, while producing qualitatively
the same results. Moreover, SASPA also provides the eigenvalue derivatives, while the QR method
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Figure 4: Sensitive pole convergence areas for two-sided RQI applied to the 41-state system with
PSS gain a116,115 = 1, see also Table 1.

Table 2: Generators, PSS gain ranges, and increments for BIPS (cf. Figure 7 and 8).
generator element gain (min, max) increment

Xingó a4971,4970 (0, 15) 0.5
Paulo Afonso IV a4901,4900 (0, 15) 0.5

Itaipu Kp a4973,4972 (0, 2.2) 0.0733
Itaipu Kw a4978,4977 (0, 10.35) 0.345

needs 33600 s to compute the left and right eigenvectors as well.
Sparse eigenmethods may be used in a continuation scheme [26, 17, 5] to compute root-locus

plots, but generally require expert knowledge of the used methods and system. SASPA, on the
other hand, automatically finds the most sensitive poles. Although SASPA can take (computa-
tional) advantage of eigentriplets computed for previous parameter values, this is not necessary.
This makes SASPA also attractive for parallel computation, since SASPA runs for several param-
eter values can be executed in parallel (contrary to continuation type methods, where results for
previous parameter values are needed).

The second example is a multiparameter root-locus, where the PSS gains for Xingó, Paulo
Afonso IV, and Itaipu generators are varied simultaneously. The Itaipu PSS has two channels
(power and frequency deviations), and the two associated gains, Kp and Kw, are varied simulta-
neously (see Table 2). Figure 7 shows the traces for the most sensitive critical poles as computed
by SASPA (computing 20 poles per run, initial shift s0 = 1i). The CPU time for the 30 runs
was 3000 s (only 1400 s when computing 10 poles per run; 20 poles were computed to trace the
non-critical poles as well). SASPA succeeds in tracing both critical as non-critical sensitive poles,
and is still faster than the QR method (3600 s), cf. Fig. 8.

4.3 Large-scale power system II (3172 states)

BIPS/07 is a year 2007 operations planning model developed by the Brazilian system operator ONS
(www.ons.com.br). The state-space realization has 3172 states, and the descriptor realization is of
order n = 21476. Figure 9 shows the traces for the poles most sensitive to simultaneous variations
in the Itaipu Kp and Kw gains, as computed by SASPA (computing 20 poles per run, initial shift
s0 = 2i). The CPU time for the 30 SASPA runs was 4664 s. A single QR run to compute the
full set of eigenvalues requires already 800 s, and computation of a 30 step root-locus plot with
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Figure 5: Root locus plot of sensitive poles of BIPS/97 computed by SASPA (Xingó PSS gain
a4971,4970 = 0, 0.5, . . . , 30). As the gain increases, the critical rightmost pole (starting in the right
half of the complex plane) crosses the imaginary axis and the 5% damping ratio boundary. Squares
denote the poles for a4971,4970 = 0.
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Figure 6: Root locus plot of poles of BIPS/97 computed by the QR method (Matlab’s eig) (Xingó
PSS gain a4971,4970 = 0, 1, . . . , 30). As the gain increases, the critical rightmost pole (starting in
the right half of the complex plane) crosses the imaginary axis and the 5% damping ratio boundary.
Squares denote the poles for a4971,4970 = 0.

Table 3: CPU times (seconds) for computation of root-locus plots with SASPA and the QR method
for BIPS/97 and BIPS/07. Notation: S=single parameter, M=multiple parameters, n=number of
states, N=dimension of descriptor realization, steps=number of steps in the root-locus.

BIPS S/M n N steps SASPA(#poles) QR
97 S 1664 13250 60 1450 (10) 7800
97 M 1664 13250 30 1400 (10) 3600
97 M 1664 13250 30 3000 (20) 3600
07 M 3172 21476 30 4664 (20) 24000
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Figure 7: Root locus plot of sensitive poles of BIPS/97 computed by SASPA (multiple parameters,
see Table 2 for gain ranges). Various poles become more damped as the PSS gains increase, the
two critical rightmost poles crossing the imaginary axis and the 5% damping ratio boundary,
respectively. Squares denote the poles for the system when the three PSSs in Table 2 have zero
gain.
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Figure 8: Root locus plot of poles of BIPS/97 computed by the QR method (multiple parameters,
see Table 2 for gain ranges). Various poles become more damped as the PSS gains increase,
the two critical rightmost poles crossing the imaginary axis and the 5% damping ratio boundary,
respectively. Squares denote the poles for the system when the three PSSs in Table 2 have zero
gain.
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Figure 9: Root locus plot of sensitive poles of BIPS/07 (3172 states) computed by SASPA. As the
Itaipu Kp and Kw gains increase (see Table 2 for gain ranges), the critical rightmost pole crosses
the imaginary axis and the 5% damping ratio boundary, respectively. Squares denote the poles
for the system when the PSS has zero gains in its two channels.

the QR method would take 24000 s (see also Table 3). Figure 9 indicates that the Itaipu PSS is
essential to maintain positive damping to the major oscillatory mode associated with this large
power plant (at slightly above 5 rad/s), but does not significantly impact other interarea modes.
It also confirms that SASPA can be used to obtain root-locus plots for large power system models
within reasonable CPU time, while application of the QR method is no longer practical.

5 Conclusions

The (subspace accelerated) Sensitive Pole Algorithm (SA)SPA is an effective, efficient, and robust
method to compute the poles that are most sensitive to system parameter changes. Because
SASPA operates on the sparse descriptor matrices of the system and computes the most sensitive
poles automatically, it is very useful in root-locus studies of large-scale systems.

Root-locus plots, as their computation with SASPA is cost-effective for large-scale systems, will
help to expedite small-signal stability studies on the verification of PSS and POD controller tuning
and effectiveness to damp local and interarea modes during base case conditions and contingencies
[26, 32, 33], among other applications.

Numerical experiments with realistic power system models confirmed that SASPA is a reli-
able method for computing and tracing the sensitive poles and showed significant speed-ups in
computational times over existing methods such as the QR method. The authors envision ap-
plying (SA)SPA to help to determine generation rescheduling in critical power plants for online
oscillation damping control [33, 34]. The efficient determination of the system matrix derivatives
for numerous rescheduling alternatives is needed for the successful application of SA(SPA) in this
online application.

Without any adaptation, SASPA can be used for sensitive eigenvalue computations that arise
in several other engineering fields and numerical analysis as well.
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Table 4: Iterates for SPA and RQI for A = diag(3α, α), with α = 1.
SPA RQI

k sk ||Avk − skvk||2 sk ||Avk − skvk||2
0 1.5 O(100) 1.5 O(100)
1 2 O(100) 1.2 O(10−1)
2 2.8 O(10−1) 1.0027 O(10−2)
3 2.999 O(10−2) 1 O(10−4)
4 3 O(10−6) 1 O(10−13)
5 3 O(10−18) 1 O(10−18)
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A SPA: Matlab code and example

The Matlab code for the Sensitive Pole Algorithm (cf. Alg. 1) is shown in Alg. 2. The following

Algorithm 2 Matlab code for Sensitive Pole Algorithm (SPA)

function [lambda, x, y] = spa(A, E, dA, s0, tol)
n = size(A, 1) ; nres = 1 ; k = 0 ; s = s0 ;
v = ones(n,1) ; v = v / norm(v) ;
w = ones(n,1) ; w = w / norm(w) ;
while nres ¿ tol

b = dA*v ; b = b / norm(b) ;
c = dA’*w ; c = c / norm(c) ;
v = (s*E - A) \ b ;
w = (s*E - A)’ \ c ;
s = s - c’*v / (w’*E*v) ;
v = v / norm(v) ; w = w / norm(w) ;
nres = norm( A*v - s*E*v ) ;
k = k + 1 ;

end
lambda = s ; x = v ; y = w ;

small example illustrates the convergence behavior of SPA. Let A = diag(3α, α) and E = I, where
α is a parameter. Clearly, λ1 = 3α is the most sensitive eigenvalue: ∂λ1

∂α
= 3, while ∂λ2

∂α
= 1. Table

4 shows the iterates for SPA and RQI for α = 1, s0 = 1.5, and v0 = w0 = [1, 1]T . Having the
same initial settings, SPA converges to the most sensitive eigenvalue λ1 = 3, while RQI converges
to λ2 = 1, the eigenvalue nearest to the initial shift s0 = 1.5.
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