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Abstract: This paper describes the state-of-the-art on the 
small-signal stability analysis and design of FACTS assisted 
power systems. The benefits of integrating all these tools into 
a comprehensive package and properly employing graphical 
interface, including animation of algorithm results, are highly 
emphasized. 

ALGORITHMS FOR THE ANALYSIS AND CONTROL 
OF THE SMALL SIGNAL STABILITY OF LARGE 

SCALE POWER SYSTEMS 
 
 Until the early eighties, the small signal stability 
analysis of power systems was based on the conventional 
state-space description. The state matrix, in this application, is 
quite dense and the use of sparsity oriented methods would 
not yield any computational gains. The only alternative was to 
use the numerically robust QR routine to produce the full 
eigensolution, which is computationally expensive. The QR 
eigensolution of a non-symmetric, real matrix of order 500, 
for example, requires almost one hour of CPU on a 66 MHz 
PC486. 
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INTRODUCTION 

 
  There has recently been an intense development of 

eigenanalysis tools for power systems dynamics and control. 
This paper provides an up-to-date review of the major 
algorithms available. Comments on other relevant but yet 
unpublished algorithms are also made. 

 The conventional state-space description is obtained 
through the elimination of the algebraic variables of the 
mathematical model. In many applications, the power system 
case included, the algebraic variables in the model are usually 
more numerous than the state variables.  
  The problem of multiple, decentralized controller 

synthesis in large, FACTS assisted power systems is 
addressed. 

 A report in CIGRE [1] recognized the large benefits 
of working with the unreduced set of differential-algebraic 
equations linearized at an operating point. The resulting power 
system Jacobian is large and highly sparse, allowing efficient 
use of sparsity oriented programming. The computation of all 
system eigenvalues, not practical for large power systems, was 
since then replaced by the computation of only the 
eigenvalues of interest. 

 
 A good part of the paper is dedicated to showing the 
high productivity gains achieved when using a well designed 
package for graphical display and animation of results. 
 
 The pressing needs for better utilization of existing 
transmission and generation equipment will eventually dictate 
a wider use of FACTS devices. The higher complexity and 
stricter requirements on power system controls, under both 
steady-state and dynamic conditions, calls for the immediate 
development and use of more sophisticated computer tools. 
The material in this paper may help the further development of 
one of these tools. 

 
 Many important developments occurred in the last 
fifteen years, some only transposing the algorithms, which 
originally operated on the conventional state-space 
description, to the non-reduced system description. Many 
other original concepts have also been developed as a natural 
consequence of using the more flexible and simpler non-
reduced formulation. The use of a non-reduced formulation 
has also gained considerable attention in the recent control 
systems literature, where it is called "descriptor systems". 

 
 

 
 The algorithms which are already established as 
computationally efficient in the stability analysis of large 
power systems are listed below: 
 
1. Single eigenvalue nearest to a given point in the complex 

plane and its associated left and right eigenvectors 
(Inverse Iteration and Generalized Rayleigh Quotient 
Iteration) [1,2]. 



2. Frequency response plots for any system transfer function 
[1,2]. 

3. Eigenvalue/vectors strongly associated with the system 
electromechanical oscillations (AESOPS Method) [2,3,4]. 

4. Transfer function zeros for SISO and MIMO systems [5]. 

5. System time response to applied step disturbances [2,6]. 

6. Mode shapes; participation factors; controllability and 
observability factors [3,4,7]. 

7. Transfer function residues; eigenvalue sensitivities to 
changes in system parameters [8,9]. 

8. Several eigenvalues near a point in the complex plane and 
associated eigenvectors (Lop-Sided Simultaneous 
Iteration and Modified Arnoldi Methods) [4,10,11]. 

 Other eigensolution algorithms which are still very recent, 
or not fully proven, or not yet published deserve special 
attention. The list below inevitably reflects the authors’ 
biased views and experiences: 

9. Compute, through a single-vector iterative scheme, only 
the most relevant poles in a high-order scalar transfer 
function [12]. 

10. The two-stage Hybrid algorithm [13], utilizing the almost 
forgotten Bi - iteration algorithm [13] as the first stage 
and then several independent processes of the generalized 
Rayleigh quotient as the second stage. 

11. More complex matrix transforms (S-Matrix, Cayley, 
Möbius) to achieve better convergence characteristics 
and/or to yield improved control over the eigenvalues of 
interest [14,15]. 

12. The very recent Refactored Bi-iteration algorithm, whose 
authors claim unprecedented convergence characteristics 
[16]. 

 
 The authors are aware that very important 
developments by other groups will be published soon. 
 
 References [12,16] describe new numerical linear 
algebra algorithms which can be applied to matrix problems in 
any field of engineering or mathematics. 
 
 Selective modal analysis [7] has always attracted 
large interest for correctly focusing on only the relevant 
eigenvalues to a given engineering problem. This means that 
in the study of poorly damped oscillations (ranging from 0.2 
to 2 Hz), only the eigenvalues strongly associated with these 
oscillations are to be calculated. 
 
 
 The AESOPS algorithm [3] and its subsequent 
improvements can be classified as selective modal analysis 
methods, since they are meant to compute the dominant 
oscillation modes in the torque-angle loop of a given 
generator. A recent addition to this class of methods is the 

already described algorithm for the computation of dominant 
poles in very high order transfer functions [12]. 
 
 A good part of the sparsity oriented eigenanalysis 
algorithms and methodologies developed for oscillatory 
electromechanical stability have been more recently applied to 
the study of voltage stability of large power systems 
[17,18,19]. 

 The same algorithms can also be applied to the 
subsynchronous resonance problem, which requires the 
dynamic representation of the RLC components of the 
network and involves higher frequency (20 to 40 Hz) 
phenomena. The same concepts of a non-reduced set of 
equations to describe the dynamic behavior of the electrical 
network can be utilized. This approach is currently being  
investigated in [20]. 
 
 Parallel processing will eventually become widely 
used to perform computer intensive tasks which allow natural 
parallelization. It will be used in on-line applications and off-
line interactive computation since both have tight time 
constraints. On-line voltage stability assessment software is 
presently under development to strengthen further the crucial 
role of modern Energy Management Systems. The parallel 
computation times given in [21,13] show that partial 
eigensolutions of large matrices can be obtained in a time 
frame and with hardware cost compatibles with EMS 
applications. 
 
 More need be said about the recently developed 
Refactored Bi-iteration algorithm [16]. Existing Subspace 
Iteration methods perform only one spectral transformation to 
the system matrix per program run and therefore require only 
one matrix factorization. The Refactored Bi-Iteration method 
performs, at every iteration, one matrix factorization for each 
yet non-converged trial vector in the subspace. The higher 
computational load per iteration of the proposed RBI method 
is largely compensated by the reduced number of iterations 
(below 10) needed for high accuracy convergence of the entire 
left and right subspaces being iterated. All trial vectors always 
converge in a reduced number of iterations, irrespective of the 
subspace dimension or of the given initial shifts. The method 
can be seen as a multi-vector (subspace) generalization of the 
single-vector Rayleigh Quotient iteration for unsymmetric 
matrices [2,13,16]. The method has shown excellent 
performance in solving for eigenvalue clusters. 
 
 A most valuable and unique feature of the RBI 
method is the ability to start with as many initial shifts as the 
number of trial vectors utilized. The location of the various 
initial shifts can be chosen completely independent from one 
another. They should preferably be located in the complex 
plane region associated with the oscillatory modes usually 
involved in the physical phenomenon under analysis. For 
electromechanical oscillation problems, the frequency range of 
interest is from 0.2 to 2 Hz (1.2 to 12.5 rad/s). If all the poorly 
damped (or slightly unstable) eigenvalues are to be computed 
on a single run, it is best to place a sufficient number of initial 

 2



shifts along the imaginary axis, ranging at least from j1.2 to 
j12.5. 
 
 The dominant pole algorithm in [12] only produces 
eigenvalues which are dominant in a transfer function of 
interest. The user is therefore freed from the repetitive task of 
verifying if the converged eigenvalue is of interest to the 
analysis in hand. Root Locus plots, for instance, could be 
fairly rapidly and automatically obtained for large systems. 
Being a single -vector iterative method, repeated solutions are 
however frequently obtained even for widely different  initial 
estimates. The use of a sparse preserving implicit deflation 
procedure [15] ensures that different eigenvalues are obtained. 
 
 Model reduction is an important issue to the control 
system field and its applications in power system dynamics 
[22,23,24,25]. Highly reduced power system transfer function 
models prove effective for controller design [23]. Once the 
dominant transfer function poles have been found, the 
calculation of its residues can be efficiently carried out. From 
this information, one can build a reduced transfer function 
model whose accuracy can be varied at will with the number 
of dominant poles considered. 
 
 The two following questions have frequently been 
raised: How could one be assured that all dominant poles have 
been found ?   Can one envision the development of a more 
powerful algorithm, which simultaneously computes all the 
relevant poles of a given transfer function ?   The answers to 
these two questions are given in the following paragraph. 
 
 The authors have already developed a mathematically 
rigorous algorithm for the simultaneous computation of the 
various dominant poles of a given scalar transfer function. 
This algorithm is now fully tested and a technical report is 
being prepared [26]. Mathematically speaking, there can be no 
assurance that all dominant transfer function poles will be 
found by the new method. However, an engineering oriented 
search method has been devised which practically ensures that 
all relevant poles have been found. 
 
Controller Synthesis for Multivariable Systems 
 
 So much about analysis tools, that something must be 
said about controller design tools for MIMO systems. 
Unfortunately, controller synthesis tools are not at the same 
level of development concerning large power system dynamic 
problems. The authors have experience with the use a the 
sequential loop closure technique [22,27] for the design of 
multiple control loops. This is a frequency response based 
technique, whose use becomes quite laborious in the presence 
of various undamped oscillation modes and control loops to be 
designed. 
 
 Partial pole location techniques have been applied to 
damp oscillations and can simultaneously tune various power 
system stabilizers [28,29]. The authors have implemented the 
algorithm described in [28,29]. This is fixed-point iteration 
method and its performance is disappointing: convergence to 

one existing solution may be very slow or highly dependent 
on the ordering of equations. Partial pole location, even with 
proper loop scheduling [22,27], may turn unstable other 
closed loop eigenvalues. As an example, note that when 
tuning power system stabilizers one may obtain increased 
damping of the electromechanical mode at the cost of 
destabilizing the “exciter mode” [6,30]. The authors have 
based their loop-scheduling studies on the analysis of transfer 
function residues and critical transmission zeros [5,8,27,30]. 
Perhaps the most promising method for the simultaneous 
design of various stabilizers is the optimal decentralized 
control algorithm reported in [28]. The actual control 
structures used successfully in the industry are preserved in 
the algorithm of [28], which also efficiently exploits the 
system matrix sparsity. 
 
The Power of Graphics 
 
 Interactive computation has greatly potentialized the 
role of computers in engineering, power system analysis 
included. Graphical interface is inseparable from interactive 
computation, and increases productivity in data preparation, 
analysis of results, problem  understanding and algorithm  
development. 
 
 The statistics provided in [31] shows that, for a 
simple power flow scheduling exercise, engineers performed 
the requested task in about half the time if a well designed, 
friendly graphical interface was utilized. 
 
 We have been perfecting a simple graphical display 
and animation package for our small - signal stability software 
over the last few years. Large gains in productivity were 
achieved in both engineering studies and algorithm 
development with the use of graphics. 
 

 
GRAPHICAL ANALYSIS OF RESULTS 

 
 Figures 1 to 7 are enhanced versions of monitor 
screens of the authors’ interactive package. The power system 
analyzed is the 616 bus, 995 line, 50 generator model of the 
South-Southeast Brazilian System described in [5,8,27]. All 
these figures were taken from [27], where a stabilization study 
was carried out based on TCSC modulation for damping the 
eight poorly-damped oscillatory modes. The acronym TCSC 
stands for Thyristor Controlled Series Compensation. 

 The captions in Figures 1 to 7 almost suffice to give 
the reader a good understanding about their meaning and 
contents. The names and integers within Figures 2 and 3 
identify and rank the system generators which participate most 
in the oscillation modes. Those at Figure 4 identify and rank 
the transmission lines most appropriate for locating the TCSC 
damping devices. 

 3



Real

Im
ag

in
ar

y

0.00

5.00

10.00

15.00

20.00

-1.00 -0.80 -0.60 -0.40 -0.20 0.00

damping > 5 %

damping < 5 %
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Figure 2. Rotor Speed Mode Shape of the South-Southeast 
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Figure 3. Rotor Speed Mode Shape of the Itaipu  

“Local” Mode (1.11Hz)  

 The TCSC location most appropriate for damping the 
inter-area mode (Figure 2) is the Assis-Maringá 230 kV 
transmission line, which yielded the ∆Pkj(s)/∆Bkj(s) residue 
of largest modulus. Figure 4 depicts the major line residues in 
phasor diagram form. Note that, despite the large number of 
system lines (995) and the inter-area nature of the mode, only 
eleven lines have residues of magnitude greater than 10% of 

the largest one. Therefore, this is a very effective ranking 
procedure. 
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1-Assis - Maringá 230 
2-Areia - Ivaiporã 525 
3-Jacuí 13.8 / 138 
4-Ivaiporã 765 / 525 
5-Itaúba 13.8 / 230 
6-Gravataí 230 / 500 

Figure 4. Residues for the Transfer Functions  
∆Pkj(s)/∆Bkj(s) for s = -0.002 ±j3.511 

 
 Eight TCSC damping devices were located in critical 
system lines and adequately tuned, bringing all system modes 
to above a 5% damping level. This multi-controller tuning 
exercise was successfully carried out with both the sequential 
loop closure [22,27] and partial pole location [28,29] 
techniques. Figure 16 shows the loci of the system eigenvalues 
in the presence of the eight TCSC oscillation damping devices 
whose signals were derived from generator rotor speeds. 
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Figure 5. Eigenvalues for 50-Generator System 

1-Jacuí 4-C. Dourada 
2-Itaúba 5-Promissão 
3-Itaipu 6-Piratininga 

 with Eight TCSC Damping Devices  
(375 State Variables) 

1-Itaipu  4-Passo Fundo     7-S. Osório (2M) 
2-S. Osório (4M)    5-Itaúba  8-S. Santiago 1 
3-S. Cruz 6-G.B. Munhoz  9-S. Santiago 3 

 
 Step response results for the linearized system are 
shown for a simultaneous disturbance to the mechanical power 
of three large generators. This disturbance excites some of the 
major system modes. The variables pictured in the plots are 
the electrical power outputs of the same generators. The 
system step responses, in the absence and presence of the 
eight TCSC damping devices, are shown in figures 6 and 7 
respectively. 
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Figure 6. Step Response for 50-Generator System 
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Figure 7. Same Step Disturbance Applied to 50-Generator 
System with Eight TCSC Damping Devices 

(375 States) 
 

 Figures 8 to 14 are actual monitor screens produced 
during program execution. Figure 8 shows a frequency 
response plot obtained in the study of the New England Test 
System and fully reported in [12]. 

 

 
Figure 8. Bode Magnitude Plot for ∆ω36(s) / ∆Pmec

36(s) for the 
New England Test System [12]. 

 
 The development of an efficient Root-Locus 
algorithm for large scale systems was pursued by the authors 
for a long time. This has been recently achieved with the use 
of the dominant pole algorithm associated with sparse 

deflation techniques [32]. The Root Locus plot displayed in 
Figure 9, related to the (six-machine plus one HVDC link) 
benchmark system of [30], was automatically obtained with 
this algorithm. A color code is used in the monitor screen 
pictures to readily identify the different critical transfer 
function poles (system eigenvalues). The direction and relative 
speeds of the several pole displacements in the root-locus plot 
can be easily grasped through an user-controlled visual 
animation facility. 

 
Figure 9. Root-Locus Plot for Varying PSS Gain of 

Benchmark System [30]. 

 In the small signal analysis of voltage stability 
problems, the eigenvalues of interest are real. Therefore, the 
bus voltage mode shapes can be better visualized through bar 
charts. Figure 10 depicts  the major voltage collapse mode for 
the Rio de Janeiro Area, detailed discussed in [19]. 

 
Figure 10. Bar Chart of a Voltage Collapse Mode for the  

Rio de Janeiro Area [19]. 
 
Graphical Animation of Algorithm Performance 
 

 This paper section is about the benefits of graphical 
animation to problem understanding, teaching activities and 
also the development of new algorithms. 
 
 Figures 11 to 13 are about the transfer function 
dominant pole algorithm [12] applied to the New England 
Test System. Figure 11 depicts the trajectory of the dominant 
eigenvalue estimate for the transfer function ∆ω35-36(s) / 
∆Pmec

35-36(s). The values and locations of the nine numerals 
within the figure denote the iteration number and the current 
estimate for the dominant transfer function pole (eigenvalue). 
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A high precision convergence to λ = -.467 + j8.96 is achieved 
in nine iterations. The initial estimate is labeled “1” and has a 
value of j2. The full eigenvalue spectrum for the New England 
system is also pictured in Figure 11. 

 

 
 The reasoning behind the method’s convergence 
trajectory can be easily visualized from the plot of the 
dominant pole-zero spectrum for the ∆ω35-36(s) / ∆Pmec

35-36(s) 
transfer function (see Figure 12). The convention for Figure 
12 is as follows: dots denote the dominant zeros and crosses 
the dominant poles. The remaining poles of the eigenvalue 
spectrum disappeared by pole-zero cancellation, which is 
inherent to a transfer function description. Note in Figure 12 
that the dominant pole (eigenvalue) λ = -.467 + j8.96 stands 
practically alone in the dominant spectrum. Its large impact on 
the system frequency response is clearly seen in Figure 13. 

Figure 13. Bode Magnitude Plot for Transfer Function 
 ∆ω35-36(s) / ∆Pmec

35-36(s) of the New England 
 Test System  

 The eigenvalue convergence pattern shown in  
Figure 11 can also be visualized with the help of the transfer 
function Bode magnitude plot (see Figure 13). The numerals, 
denoting the iteration number, are placed over the magnitude 
plot at points whose x-coordinate reflect the imaginary parts 
of the dominant pole estimates. 

 

 
 Figure 14 depicts the convergence performance of 
the recently developed Refactored Bi-Iteration algorithm [16] 
for the previously described 50-generator, 362-states power 
system model. The dots represent the ten initial complex shifts 
provided. The values and locations of the numerals denote the 
iteration where high accuracy convergence occurred and the 
complex-plane loci of the converged eigenvalues, 
respectively. 

Figure 11. Trajectory of Eigenvalue Estimate with Final 
 Convergence to the Dominant Pole of Transfer Function 
∆ω35-36(s) / ∆Pmec

35-36(s) of the New England Test System. 

 

 
Figure 14. Eigenvalue Convergence Pattern for 

Refactored Bi-Iteration Algorithm Figure 12. Dominant Pole-Zero Spectrum for Transfer 
Function ∆ω35-36(s) / ∆Pmec

35-36(s) of the (362 State Variables). 

New England Test System   
  CONCLUSIONS 

 
 This paper has several objectives: 
 
1) Review the state-of-the-art algorithms for the analysis and 

control of small-signal stability of large power systems. 

2) Describe the synergetic combination of algorithms and 
adequate graphical interface. Modern small-signal 
stability packages make complementary use of various 
analysis and synthesis tools. A friendly graphical interface 
is therefore the right environment to promote more 
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effective analysis and design in large power system 
dynamic studies. 

3) Emphasize the advantages of graphically visualizing the 
convergence performance of eigensolution algorithms to 
research and development work as well as to teaching 
activities. 

4) Ignite new ideas for the development of even more 
practically oriented eigensolution algorithms. 

5) Attract interest and research into the difficult problem of 
multiple controller synthesis in large scale power systems, 
considering robustness issues [33,34]. We strongly 
believe that the final answer to this problem will heavily 
involve optimization techniques. These tools will be 
fundamental to ensure better design and operation of 
FACTS assisted power systems. 
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