

VIII SIMPÓSIO DE ESPECIALISTAS EM PLANEJAMENTO DA OPERAÇÃO E EXPANSÃO ELÉTRICA

VIII SYMPOSIUM OF SPECIALISTS IN ELECTRIC OPERATIONAL AND EXPANSION PLANNING

TWO POWERFUL NETWORK MODELING APPROACHES FOR THE MODAL ANALYSIS OF HARMONIC PROBLEMS

SERGIO L. VARRICCHIO¹

NELSON MARTINS¹

SERGIO GOMES JR.¹ FRANKLIN C. VÉLIZ²

¹ CEPEL

² FCTJF

PAPER CONTENTS

Background

Network Modeling Approaches

- Descriptor System
- > S-Domain Matrix $\mathbf{Y}(s)$
- Dominant Pole Algorithm
- Test System
- Harmonic Problem
 - Option 1
 - Option 2
- Remarks and Conclusions

Transfer Impedance (Function)

$$z_{ij}(s) = \frac{V_i(s)}{I_j(s)}$$

$$z_{ij}(s) = \infty$$
 or $\frac{1}{z_{ij}(s)} = 0$

Transfer Impedance Zero

$$z_{ij}(s) = 0$$

BACKGROUND

- ♦ If s_k = σ_k + jω_k is a system pole or a transfer impedance zero then z_{ij}(σ_k + jω_k) = ∞ or 0, respectively, but z_{ij}(jω_k) ≠ ∞ or 0.
- $* ω_k$ is a parallel resonance frequency (if s_k is a pole) or a series resonance frequency (if s_k is a zero).

BACKGROUND: INFLUENCY OF THE POLE AND ZERO SPECTRA ON THE FREQUENCY RESPONSE

Harmonic voltage performance of a system depends on the location of its poles and zeros mainly with respect to the characteristic harmonic frequencies.

- Modal analysis finds poles, zeros and their respective sensitivities to system parameters.
- Most effective parameter changes in order to reduce harmonic voltage levels.

NETWORK MODELING APPROACHES

- Descriptor System and Matrix Y(s) approaches allow modal and conventional harmonic analysis of large scale networks.
- The combined advantages of the two approaches seems to be a powerful computational tool for the solutions of harmonic problems in power systems.

DESCRIPTOR SYSTEM

Main Characteristic

 \geq The circuit equations are written in the time-domain.

Main Advantage

The system poles and the transfer function zeros (eigenvalues) can be calculated all at once using QZ factorization or one at a time using Newton based algorithm.

Main Disadvantages

- The modeling of frequency dependent parameters is difficult.
- The system matrices have dimensions much larger then the number of system buses.

DESCRIPTOR SYSTEM

RLC Series Branch RLC Parallel Branch \mathcal{V}_{j} v_k R \mathcal{V} . k i_{kj} k v_{C} $v_k - v_j = R \, i_{kj} + L \, \frac{di_{kj}}{dt} + v_C$ $\frac{v_C}{R} + i_L + C \frac{dv_C}{dt} = i_{kj} \qquad L \frac{di_L}{dt} = v_C$ $C\frac{dv_C}{dt} = i_{kj}$ $v_C = v_k - v_j$ Element variables = $[v_C, i_{kj}]$ Element variables = $[v_C, i_L, i_{ki}]$

DESCRIPTOR SYSTEM

Node *k*

KCL Equations - Kirchhoff's Current Law Interconnect the various network elements

$$\sum_{m\in\Omega} i_{mk} = 0$$

 Ω is the set of all nodes conected to node k

The Interconnection of all system elements yields

$$\begin{bmatrix} \mathbf{T}_{1} & \mathbf{0} \\ \mathbf{0}^{T} & \mathbf{0}_{q} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}}_{1} \\ \dot{\mathbf{v}}_{nodal} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{1} & \mathbf{A}_{2} \\ \mathbf{A}_{3} & \mathbf{0}_{q} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{v}_{nodal} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{I} \end{bmatrix} \mathbf{i}_{nodal}$$
$$\mathbf{v}_{nodal} = \begin{bmatrix} \mathbf{0}^{T} & | \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{v}_{nodal} \end{bmatrix}$$

 $\mathbf{x}_1 \rightarrow$ Vector of all element variables

Compact form of the Descriptor System Equations

 $\mathbf{T} \, \dot{\mathbf{x}} = \mathbf{A} \, \mathbf{x} + \mathbf{B} \, \mathbf{u}$

 $\mathbf{y} = \mathbf{C} \mathbf{x}$

Main Characteristic

- > Circuit equations are written in the s-domain.
- Main Advantages
 - Modeling of frequency dependent parameters is very easy.
 - System matrices (Y(s) and its derivative with respect to s) have dimensions equal to the number of system buses.
- Main Disadvantage
 - System poles and the transfer function zeros (eigenvalues) can only be calculated one at a time.

MATRIX Y(s)

A diagonal element y_{ii} of Y(s) is equal to the summation of all elementary admittances connected to node *i*.

- An off-diagonal element y_{ij} of Y(s) is equal to the negative of the summation of all elementary admittances connected between the nodes *i* and *j*.
- The derivative matrix of Y(s) is built using the same rules used to build Y(s) but using the derivatives of the elementary admittances.

DOMINANT POLE ALGORITHM

POLE AND ZERO SENSITIVITIES TO A SYSTEM PARAMETER

The **Y** matrix is considered as a function of the complex frequency *s* and a system parameter *p*.

Sensitivity Equation

The imaginary part of a pole (or zero) sensitivity is the rate of change of the associate parallel (or series) resonance frequency with respect to a system parameter.

Which is the best bus for placing a 12-pulse industrial rectifier: Bus 101 (Option 1) or Bus 201 (Option 2)

> Total Current at Fundamental Frequency: 5.5 kA

> Harmonic Current Components:

h	11	13	23	25
<i>f</i> (Hz)	660	780	1380	1500
<i>I_h</i> (%)	9.0	8.0	4.0	4.0

OPTION 1: INFLUENCY OF THE POLE AND ZERO SPECTRA ON THE FREQUENCY RESPONSE

OPTION 1: POLE SENSITIVITIES

Frequency Associated with the Poles and Their Sensitivities $(Hz/\mu F)$ to Capacitor Changes

	P ₁	P ₂	P ₃	P_4	P_5	P_6
$f(Hz) \rightarrow$	337	640	829	1233	1916	1959
<i>C</i> ₁₁	-1.936	-0.903	0.004	-0.697	0.836	-99.888
C ₁₃	-2.731	-7.048	-0.242	-0.541	-0.170	-3.978
C ₂₂	-1.682	-1.635	-16.108	-3.294	-0.124	-0.083
<i>C</i> ₃₁	-1.387	-0.571	-0.527	-46.357	-1.701	-2.152
C ₄₂	-1.815	-3.978	-3.890	-0.286	-25.237	-3.511
C ₄₃	-2.036	-6.260	-8.375	-2.971	-63.705	5.768

OPTION 1: ZERO SENSITIVITIES

Frequency Associated with the Zeros of $Z_{101,13}$ and Their Sensitivities (Hz/µF) to Capacitor Changes

	Z ₁	Z ₂	Z ₃	Z ₄	Z ₅
$f(Hz) \rightarrow$	495	825	1221	1849	1938
C ₁₁	-0.659	-0.109	-1.981	-99.619	-3.721
C ₁₃	0.000	0.000	0.000	0.000	0.000
C ₂₂	-4.121	-14.941	-3.814	-0.242	0.004
<i>C</i> ₃₁	-2.588	-0.550	-44.867	-5.162	0.200
C ₄₂	-5.207	-4.578	-0.344	0.918	-29.679
C ₄₃	-6.786	-9.716	-3.307	-4.331	-53.585

OPTION 1: POLE SHIFT EFFECTS

OPTION 1: PROPOSED SOLUTION

Harmonic Voltage Distortion Spectrum at Bus 13

Harmonic Order	Original System (%)	Proposed Solution (%)	Limits (%)
11	9.15	2.78	3.5
13	4.33	1.65	3.0
23	0.662	0.350	1.5
25	0.563	0.309	1.5

OPTION 2: INFLUENCY OF THE POLE AND ZERO SPECTRA ON THE FREQUENCY RESPONSE

OPTION 2: POLE SENSITIVITIES

Frequency Associated with the Poles and Their Sensitivities $(Hz/\mu F)$ to Capacitor Changes

	P ₁	P ₂	P ₃	P_4	P_5	P_6
$f(Hz) \rightarrow$	337	640	829	1233	1916	1959
<i>C</i> ₁₁	-1.936	-0.903	0.004	-0.697	0.836	-99.888
<i>C</i> ₁₃	-2.731	-7.048	-0.242	-0.541	-0.170	-3.978
C ₂₂	-1.682	-1.635	-16.108	-3.294	-0.124	-0.083
<i>C</i> ₃₁	-1.387	-0.571	-0.527	-46.357	-1.701	-2.152
C ₄₂	-1.815	-3.978	-3.890	-0.286	-25.237	-3.511
<i>C</i> ₄₃	-2.036	-6.260	-8.375	-2.971	-63.705	5.768

OPTION 2: ZERO SENSITIVITIES

Frequency Associated with the Zeros of $Z_{201,22}$ and Their Sensitivities (Hz/µF) to Capacitor Changes

	Z ₁	Z ₂	Z ₃	Z ₄	Z_5
$f(Hz) \rightarrow$	450	670	1199	1914	1958
<i>C</i> ₁₁	-3.018	-0.269	-0.900	-0.700	-98.199
<i>C</i> ₁₃	-6.258	-3.683	-0.798	-0.257	-3.908
C ₂₂	0.000	0.000	0.000	0.000	0.000
<i>C</i> ₃₁	-1.063	-0.735	-47.545	-1.959	-2.180
C ₄₂	-1.892	-7.970	-0.552	-24.396	-4.303
<i>C</i> ₄₃	-2.227	-13.092	-4.552	-63.444	5.446

OPTION 2: POLE SHIFT EFFECTS

OPTION 2: POLE SENSITIVITIES

Frequency Associated with the Poles and Their Sensitivities (Hz/ μ F) to Capacitor Changes for C₂₂=26.86 μ F

	P ₁	P ₂	P ₃	P_4	P_5	P_6
$f(Hz) \rightarrow$	321	616	729	1216	1915	1958
<i>C</i> ₁₁	-1.591	-1.284	-0.007	-0.808	0.312	-99.316
<i>C</i> ₁₃	-2.175	-7.587	-0.151	-0.668	-0.201	-3.955
C ₂₂	-1.677	-3.275	-5.358	-0.845	-0.044	-0.024
<i>C</i> ₃₁	-1.185	-0.240	-0.060	-47.422	-1.799	-2.172
C ₄₂	-1.505	-1.213	-6.941	-0.406	-24.920	-3.808
<i>C</i> ₄₃	-1.669	-1.789	-12.465	-3.737	-63.681	5.715

OPTION 2: ZERO SENSITIVITIES

Frequency Associated with the Zeros of $Z_{201,22}$ and Their Sensitivities (Hz/µF) to Capacitor Changes for C_{22} =26.86 µF

	Z ₁	Z ₂	Z_3	Z_4	Z_5
$f(Hz) \rightarrow$	450	670	1199	1914	1958
<i>C</i> ₁₁	-3.018	-0.269	-0.900	-0.700	-98.199
<i>C</i> ₁₃	-6.258	-3.683	-0.798	-0.257	-3.908
C ₂₂	0.000	0.000	0.000	0.000	0.000
<i>C</i> ₃₁	-1.063	-0.735	-47.545	-1.959	-2.180
C ₄₂	-1.892	-7.970	-0.552	-24.396	-4.303
<i>C</i> ₄₃	-2.227	-13.092	-4.552	-63.444	5.446

OPTION 2: POLE SHIFT EFFECTS

OPTION 2: FINAL RESULT

OPTION 2: PROPOSED SOLUTION

Frequency (Hz)

Y(s) is a natural evolution of the conventional Y(jω) approach.

- Y(s) allows obtaining all the results produced by the Y(jω) approach. Additionally, modal analysis can be performed using Y(s).
- Descriptor System approach can be used as a powerful complement of Y(s), since it allows the computation of the complete set of system poles and transfer function zeros at once.
- This paper is a tutorial example of using modal analysis to improve harmonic voltage distortions in electrical systems.

- Basically there are three forms of improving the harmonic performance of a system: Filtering harmonic currents, improving the performance of nonlinear loads and system modifications. This paper is a contribution for the third form.
- System modifications seems to be particularly suitable for reducing harmonic distortions in larger systems which have several and spread nonlinear loads.