1999 International Conference on Power Systems Transients

STUDYING HARMONIC PROBLEMS USING A DESCRIPTOR SYSTEM APPROACH

Sergio L. Varricchio- CEPELNelson Martins- CEPELLeonardo T. G. Lima- UFFSandoval Carneiro Jr.- COPPE/UFRJ

Background

- Harmonic voltage performance of a system depends on the location of its poles and zeros mainly with respect to the characteristic harmonic frequencies
- Knowledge of the poles, zeros and their respective sensitivities to system parameters
- Identification of changes in the system which will reduce harmonic voltage levels

Difficulties

The construction of the state matrix for practical systems is not a simple task.

Methods based on state matrix formulations present some limitations regarding network topology and not automatically deal with state variables redundancy

Descriptor System Approach

 $\mathbf{T} \, \dot{\mathbf{x}} = \mathbf{A} \, \mathbf{x} + \mathbf{B} \, \mathbf{u}$ $\mathbf{y} = \mathbf{C} \, \mathbf{x}$

- Overcomes the computational difficulties associated with the state matrix method.
- Automatically deals with state variable redundancies
- Can be efficiently applied to large-scale networks of any topology

Application of the Descriptor System Approach to study harmonic problems

$\bigvee \text{Network Model}$ $\left[\frac{\mathbf{T}_1 \mid \mathbf{0}}{\mathbf{0}^T \mid \mathbf{0}_q} \right] \cdot \left[\frac{\dot{\mathbf{x}}_1}{\dot{\mathbf{v}}_{nodal}} \right] = \left[\frac{\mathbf{A}_1 \mid \mathbf{A}_2}{\mathbf{A}_3 \mid \mathbf{0}_q} \right] \cdot \left[\frac{\mathbf{x}_1}{\mathbf{v}_{nodal}} \right] + \left[\frac{\mathbf{0}}{\mathbf{I}} \right] \cdot \mathbf{i}_{nodal}$ $\mathbf{v}_{nodal} = \left[\mathbf{0}^T \mid \mathbf{I} \right] \cdot \left[\frac{\mathbf{x}_1}{\mathbf{v}_{nodal}} \right]$

Impedance as a transfer function

$$\mathbf{Z} = \mathbf{C} \cdot (s \cdot \mathbf{T} - \mathbf{A})^{-1} \cdot \mathbf{B}$$

Harmonic Impedance

$$Z_{kk} = \operatorname{diag}\left[\left(\mathbf{s} \cdot \mathbf{T} - \mathbf{A}\right)^{-1}\right]_{\left(2 \cdot n_l + k\right)} = \frac{\operatorname{det}\left(\mathbf{s} \cdot \mathbf{T}_k - \mathbf{A}_k\right)}{\operatorname{det}\left(\mathbf{s} \cdot \mathbf{T} - \mathbf{A}\right)}$$

The system poles correspond to the generalized eigenvalue problem associated with the matrix pair {**A**,**T**} $\det(s \cdot \mathbf{T} - \mathbf{A}) = 0 \Leftrightarrow \mathbf{A} \cdot \mathbf{v}_i = \lambda_i \cdot \mathbf{T} \cdot \mathbf{v}_i$ \checkmark The zeros, associated with the self impedance of node k, correspond to the generalized eigenvalue problem associated with the matrix pair $\{\mathbf{A}_{k}, \mathbf{T}_{k}\}$

Sensitivity Analysis

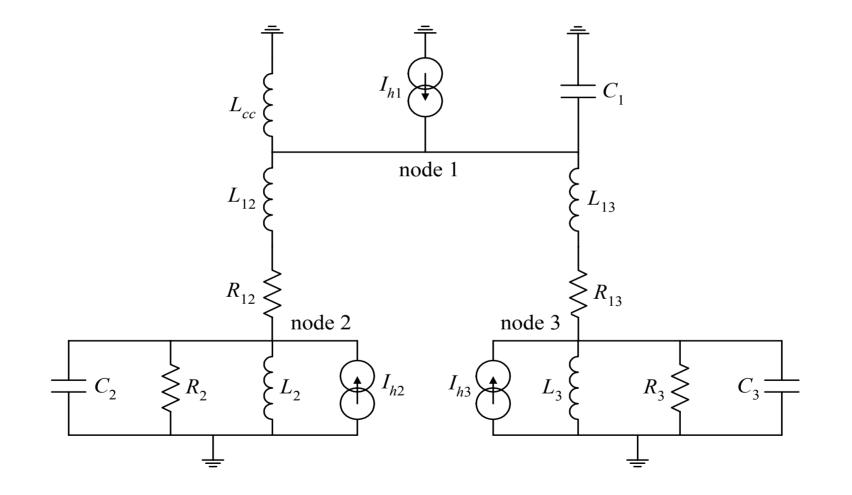
✓ Sensitivity

$$\frac{\partial \lambda_{i}}{\partial \alpha_{j}} = \frac{\mathbf{w}_{i} \cdot \left(\frac{\partial \mathbf{A}}{\partial \alpha_{j}} - \lambda_{i} \cdot \frac{\partial \mathbf{T}}{\partial \alpha_{j}}\right) \cdot \mathbf{v}_{i}}{\mathbf{w}_{i} \cdot \mathbf{T} \cdot \mathbf{v}_{i}}$$

Eigenvalue Variation

$$\Delta \lambda_{i} = \alpha_{j}^{0} \cdot \frac{\partial \lambda_{i}}{\partial \alpha_{j}} \left(\alpha_{j}^{0} \right) \cdot \frac{\Delta \alpha_{j}}{\alpha_{j}^{0}}$$

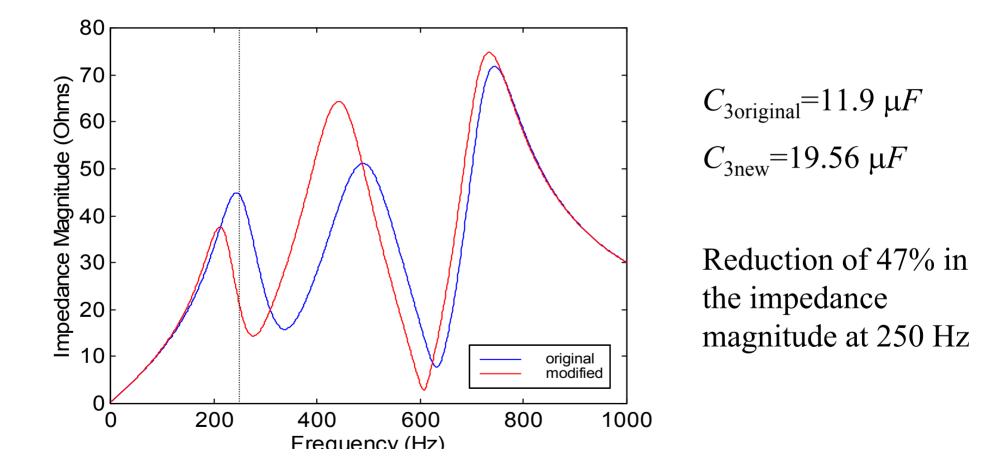
Test System



Poles and Zeros Sensitivities

	Poles			Zeros					
				Node 1		Node 2		Node 3	
	1	2	3	1	2	1	2	1	2
f(Hz)	252	489	722	425	565	332	633	382	704
L _{cc}	-633	-68	-312	0	0	-302	-501	-551	-292
L_2	-18	-22	-11	0.0	-41	0	0	-33	-15
<i>L</i> ₃	-22	-12	-1	-30	0	-29	-5	0	0
<i>L</i> ₁₂	-11	-493	-1551	0	-1820	-248	-415	-232	-1819
<i>L</i> ₁₃	-119	-949	-492	-1325	0	-470	-1080	-368	-199
C_1	-284	-74	-1295	0	0	-237	-1523	-533	-1188
<i>C</i> ₂	-158	-732	-697	0	-1689	0	0	-685	-912
<i>C</i> ₃	-339	-719	-178	-1317	0	-799	-452	0	0

Shifting Poles and Zeros



Conclusions

State-space based formulations obtain the same frequency domain results as the conventional methods based on nodal formulation and more:

- Identification of elements mostly involved in specific resonances
- Determination of the necessary changes in system elements in order to shift the location of poles and/or zeros to desired positions
- Optimum allocation of capacitor banks and/or passive filters

Conclusions

Descriptor system approach allows:

- Simple and efficient computational implementation
- Ability to model systems of any topology and containing state variable redundancies
- Applicability to large-scale networks, due to the very sparse matrices involved and the availability of powerful sparse eigensolution algorithms applied to descriptor systems

Sparse Structure of Matrix A

