To appear in IEEE Transactions on Power Systems Vol. 1, No. 2, May 2003

Computing Small-Signal Stability Boundaries for Large-Scale Power Systems

Sergio Gomes Jr., CEPEL Nelson Martins, CEPEL Carlos Portela, COPPE/UFRJ

Rio de Janeiro - Brazil

Acknowledgements

- Herminio Pinto, previously with CEPEL
- Paulo Eduardo M. Quintão, FPLF-PUC/RJ
- Alex de Castro, FPLF-PUC/RJ

System Equations Linearized at Singular Point X_{θ}

$$\mathbf{T} \cdot \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, u)$$
$$y = \mathbf{h}(\mathbf{x}, u)$$

$$\mathbf{f}(\mathbf{x}_0) = \mathbf{0}$$

$$\mathbf{T} \cdot \Delta \dot{\mathbf{x}} = \mathbf{J} \cdot \Delta \mathbf{x} + \mathbf{b} \cdot \Delta u$$
$$\Delta y = \mathbf{c} \cdot \Delta \mathbf{x} + d \cdot \Delta u$$

Basic Equations for the Hopf Algorithm

$$\begin{bmatrix} \lambda^{spec} \cdot \mathbf{T} - \mathbf{J}(p) \end{bmatrix} \cdot \mathbf{v} = \mathbf{0}$$
$$\mathbf{c} \cdot \mathbf{v} = \mathbf{1}$$

- • λ^{spec} is the specified value for a complex pole, to be reached through an appropriate change to the system parameter "*p*"
- •The second equation defines the norm of the eigenvector "v"
- •Solution by Newton-Raphson

Small-Signal Stability and Security Boundaries

$$B(\sigma,\omega)=0$$

Non-Linear Equations for Security Boundary (Modified Hopf) Algorithm

$$\mathbf{f}(\mathbf{x}_0, p) = 0$$
$$[\lambda \cdot \mathbf{T} - \mathbf{J}(\mathbf{x}_0, p)] \cdot \mathbf{v} = \mathbf{0}$$
$$\mathbf{c} \cdot \mathbf{v} = 1$$
$$B(\sigma, \omega) = 0$$

Matrix Problem to be Solved at Every Iteration

Compact Form for Hopf Equations Involving the Prior Factorization of the System Jacobian Equations

$$\begin{aligned} \Re[\mathbf{c} \cdot \mathbf{v}_{1}] & -\Im[\mathbf{c} \cdot \mathbf{v}_{1}] & \Re[\mathbf{c} \cdot \mathbf{v}_{2}] & \left[\Delta \sigma \right] = \begin{bmatrix} 1 \\ 1 \\ \Im[\mathbf{c} \cdot \mathbf{v}_{1}] & \Re[\mathbf{c} \cdot \mathbf{v}_{1}] & \Im[\mathbf{c} \cdot \mathbf{v}_{2}] & \cdot \Delta \omega = \begin{bmatrix} 0 \\ \Delta \omega \\ \frac{\partial B}{\partial \sigma} & \frac{\partial B}{\partial \omega} & 0 & \left[\Delta p \\ -B \end{bmatrix} \end{aligned}$$

Hopf Bifurcations

- Compute parameter values that cause critical eigenvalues to cross small-signal stability boundary
- Hopf bifurcations are computed for:
 - -Single-parameter changes
 - -Multiple-parameter changes (minimum distance in the parameter space)

Experience with Inter-Area Oscillation Problems (1/2)

Michigan-Ontario-Quebec	1959
Saskatchewan-Manitoba-Ontario West	1962-1965
Western USA (WSCC)	1964-1978
Sweden-Finland-Norway-Denmark	Late 1960's
Mid-continent Area Power Pool (MAPP)	1971-1970
Italy-Yugoslavia-Austria	1971-1974
South East Australia	1975
Scotland-England	1978
Western Australia	1982-1983
Taiwan	1984

Experience with Inter-Area Oscillation Problems (2/2)

Ghana-Ivory Coast	1985
Southern Brazil	1985-1987
Ontario Hydro	1985
Brazilian North-Northeast	1986
Venezuela-Colombia Interconnection	1992
Argentinean Interconnected System (SADI)	1998
South-African Cone	1998
Brazilian North-South	2000

Original slide from Dr. Prabha Kundur, with the last five additions by the authors

North-Northeast Interconnection (1988)

Brazilian N/NE Interconnection

Spontaneous oscillations controlled by operator through MW reduction

Tucurui's Power Plant Recordings (N/NE System)

Section 7.9 of CIGRE TF 38.02.16 Document "Impact of the Interaction Among P. System Controls"

Field Tests to Determine the Effectiveness of the TCSC Controllers in Damping the Brazilian North-South Intertie Oscillations

C. Gama L. Ängquist G. Ingeström M. Noroozian Eletronorte ABB

The North-South Brazilian Interconnection

TCSCs Located at the Two Ends of the North-

System Staged Tests – no PODs on 2 TCSCs

Brazilian North-South System goes Unstable!

System Staged Tests – with 2 PODs

Brazilian North-South System is now stable

Large-Scale, Decentralized Oscillation Damping Control Problem

Hopf Bifurcations – Test System Utilized

- System Data:
 - 2400 buses, 3400 lines/transformers, 2520 loads
 - 120 generators, 120 AVRs, 46 PSSs, 100 speed-governors
 - 1 HVDC link (6,000 MW)
 - 4 SVCs
 - 2 TCSCs
- Jacobian Matrix:
 - 13.062 lines
 - 48.521 non-zeros
 - 1676 states

Hopf Bifurcations – Test System Problem

• The TCSCs are located one at each end of the North-South intertie and are equipped with PODs to damp the 0.17 Hz mode

• The Hopf bifurcation algorithms were applied to compute eigenvalue crossings of the security boundary (5% damping ratio) for simultaneous gain changes in the two PODs

Eigenvalue (Pole) Spectrum for Brazilian North-South System (1,676 eigenvalues)

Poles in window near the origin are shown enlarged in next slides

North-South System with no TCSCs

North-South System with 2 TCSCs

Inter-area mode without TCSCs: $\lambda = -0.0335 + j 1.0787 (\zeta = 3.11\%)$

Inter-area mode with TCSCs: $\lambda = -0.318 + j \, 1.044 \, (\zeta = 29.14 \, \%)$

Computation of S. Signal Stability Boundaries

- Different algorithms, heuristics, parameter limits and boundaries
 - Change of a single parameter (Newton)
 - Change of multiple parameters (Lagrange)
 - Step-length control
 - Maximum and minimum limits for parameter values
 - Small-signal security boundaries
- Cases investigated by the authors
 - Simultaneous change in the gains of the 2 TCSCs
 - Independent changes in the gains of the 2 TCSCs
 - Varying other system parameters

Two crossings of the security boundary were found, for POD gains far away from the nominal values (K_{nom} = 0.6 pu):

2.1172 > K > 0.0647

- Computational cost of Hopf bifurcation algorithm
 - Single-parameter changes : 0.16 s (per iteration)
 - Multiple-parameter changes : 0.35 s (per iteration)

Jacobian Matrix for Brazilian System Model (13, 062 equations with 48,626 non-zeros)

Eigenvalue (Pole) Spectrum for Brazilian North-South System (1,676 eigenvalues)

Hopf Matrix and its LU Factors (26,127 lines)

108,288 non-zeros

256,915 non-zeros

Convergence Performance of the Hopf Algorithm (K_{min} Solution)

Iteration	Eigenvalue Estimate	Gains of the two PODs
0	-0.31793 + <i>j</i> 1.0437	0.600000
1	-0.049219 + <i>j</i> 0.98315	0.264483
2	-0.055743 + <i>j</i> 1.1135	0.00911156
3	-0.053862 + <i>j</i> 1.0759	0.0596167
4	-0.053750 + <i>j</i> 1.0736	0.0646849
5	-0.053749 + <i>j</i> 1.0736	0.0647119
6	-0.053749 + <i>j</i> 1.0736	0.0647119

Convergence Performance of the Hopf Algorithm (K_{max} Solution)

Iteration	Eigenvalue Estimate	POD Gains	ζ(%)
0	-0.34641 + <i>j</i> 0.57961	0.600000	51.30
1	-0.28045 + <i>j</i> 0.61841	0.727598	41.30
2	-0.19803 + <i>j</i> 0.60087	0.864511	31.30
3	-0.12364 + <i>j</i> 0.56710	1.14716	21.30
4	-0.059773 + <i>j</i> 0.52549	1.59247	11.30
5	-0.024886 + <i>j</i> 0.49710	2.04841	5
6	-0.024790 + <i>j</i> 0.49518	2.11759	5
7	-0.024789 + <i>j</i> 0.49516	2.11725	5

Pole Spectrum of 1,676-State System

Small window near the origin is shown enlarged in next 3 slides

Enlarged View of Small Window in the 1676-Pole Spectrum, for $K_{nom} = 0.6$

Enlarged View of Small Window in the 1676-Pole Spectrum, for $K_{min} = 0.06471$

Enlarged View of Small Window in the 1676-Pole Spectrum, for $K_{max} = 2.1172$

Conclusions

- Developed Hopf algorithm showed robust performance for largescale systems
- Ensuring that all crossings of the security border have been determined is not an easy task for large-scale problems
- Finding the closest bifurcation point in the multi-parameter space requires optimization techniques (Minimum Distance to Hopf)
- Hopf algorithms and Minimum Distance to Hopf algorithms may be useful in the design of decentralized, non-linear controllers in power systems
- The authors have also been applying these algorithms to other problem areas.