1999 International Conference on Power Systems Transients

AUGMENTED STATE-SPACE FORMULATION FOR THE STUDY OF ELECTRIC NETWORKS INCLUDING DISTRIBUTED-PARAMETER TRANSMISSION LINE MODELS

Leonardo T. G. Lima Nelson Martins Sandoval Carneiro Jr.

- UFF
- CEPEL
- COPPE/UFRJ

Background

Linear systems techniques

- frequency response
- eigenvalue/eigenvector analysis
- sensitivities
- ✓ transfer function residues, etc.
- State-space model
- Efficient large scale systems algorithms

Difficulties

The construction of the state matrix for practical systems is not a simple task

Methods based on state matrix formulations present some limitations regarding network topology and not automatically deal with state variables redundancy

State-space representation of distributedparameter models

Descriptor System Approach

 $\mathbf{T} \, \dot{\mathbf{x}} = \mathbf{A} \, \mathbf{x} + \mathbf{B} \, \mathbf{u}$ $\mathbf{y} = \mathbf{C} \, \mathbf{x}$

- Overcomes the computational difficulties associated with the state matrix method.
- Automatically deals with state variable redundancies
- Can be efficiently applied to large-scale networks of any topology

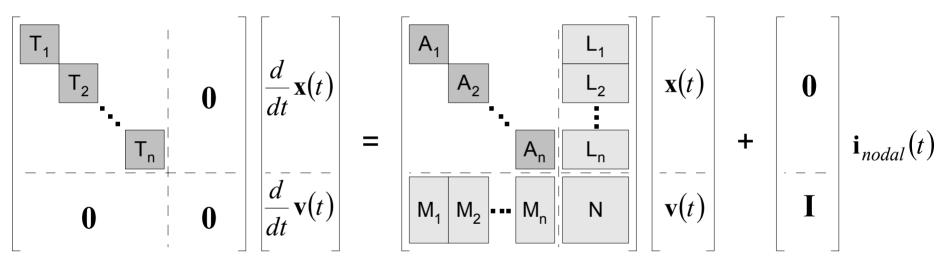
Objectives

Application of the Descriptor System Approach to study electric networks including distributedparameters transmission lines

Establish the grounds for the determination of dynamic equivalents

System Model

Vetwork Model



Impedance as a transfer function

$$z_{kk}(s) = \frac{v_k(s)}{i_k(s)} = \mathbf{C}_k (s \mathbf{T} - \mathbf{A}) \mathbf{B}_k$$

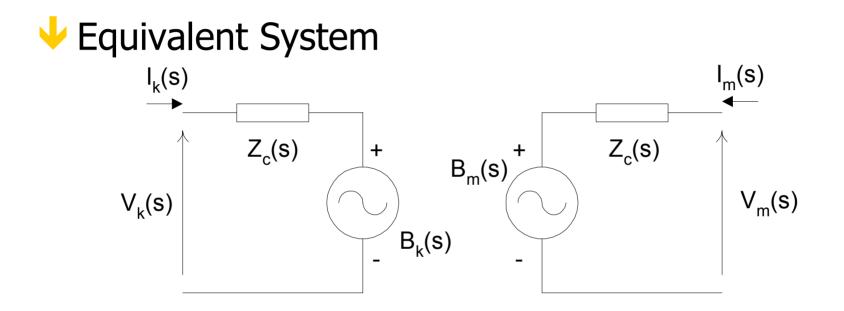
System Model

Each network component is modeled as a descriptor system with terminal voltages as inputs and current injections as outputs

$$\mathbf{T}_{i}\dot{\mathbf{x}}_{i} = \mathbf{A}_{i}\mathbf{x}_{i} + \mathbf{L}_{i}\mathbf{v}$$
$$\mathbf{i}_{i} = \mathbf{M}_{i}\mathbf{x}_{i} + \mathbf{N}_{i}\mathbf{v}$$

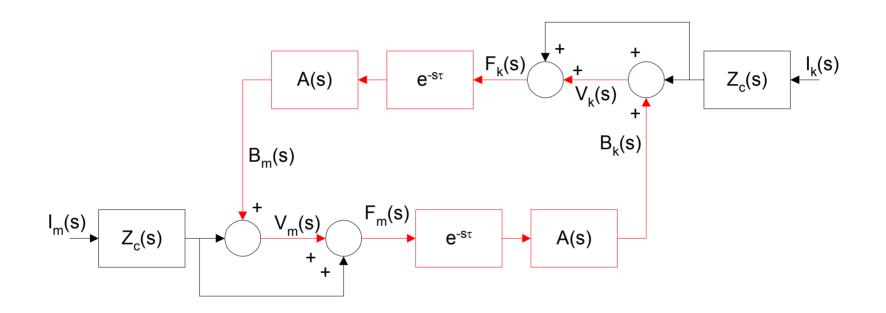
System integration through Kirchoff current law applied to each node of the network

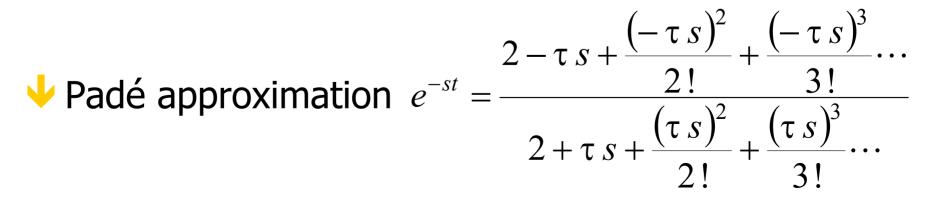
Distributed Parameter Model



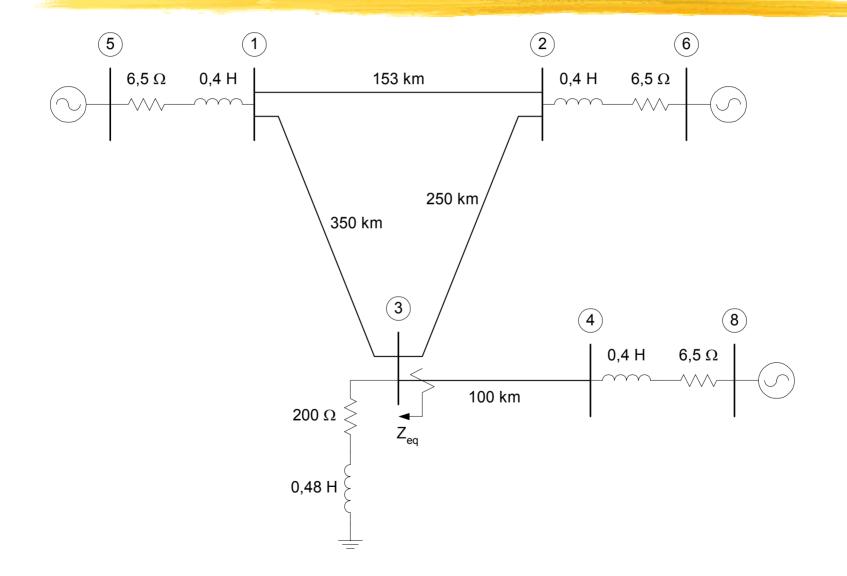
$$V_{k}(s) = B_{k}(s) + Z_{C}(s)I_{k}(s) \qquad B_{k}(s) = A_{1}(s)[V_{m}(s) + Z_{C}(s)I_{m}(s)]$$
$$V_{m}(s) = B_{m}(s) + Z_{C}(s)I_{m}(s) \qquad B_{m}(s) = A_{1}(s)[V_{k}(s) + Z_{C}(s)I_{k}(s)]$$

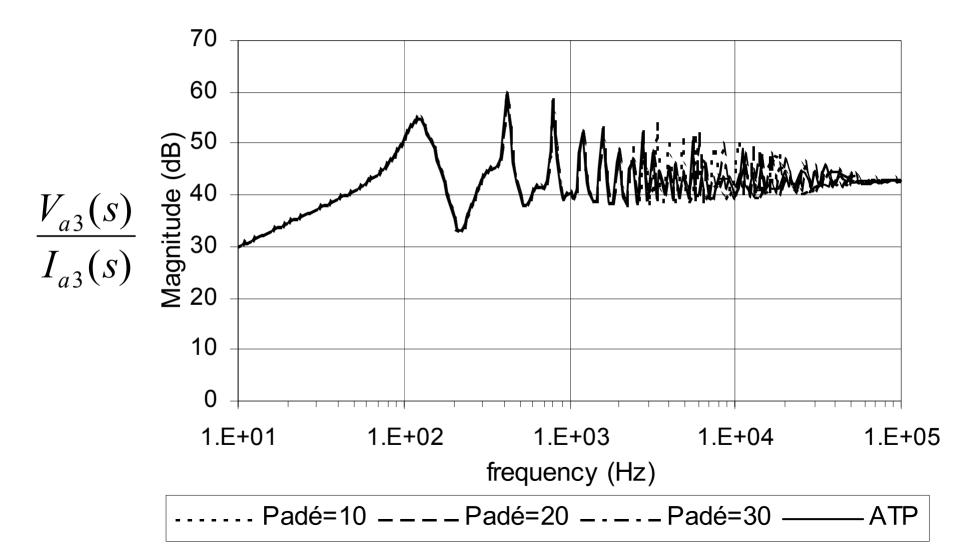
Distributed Parameter Model

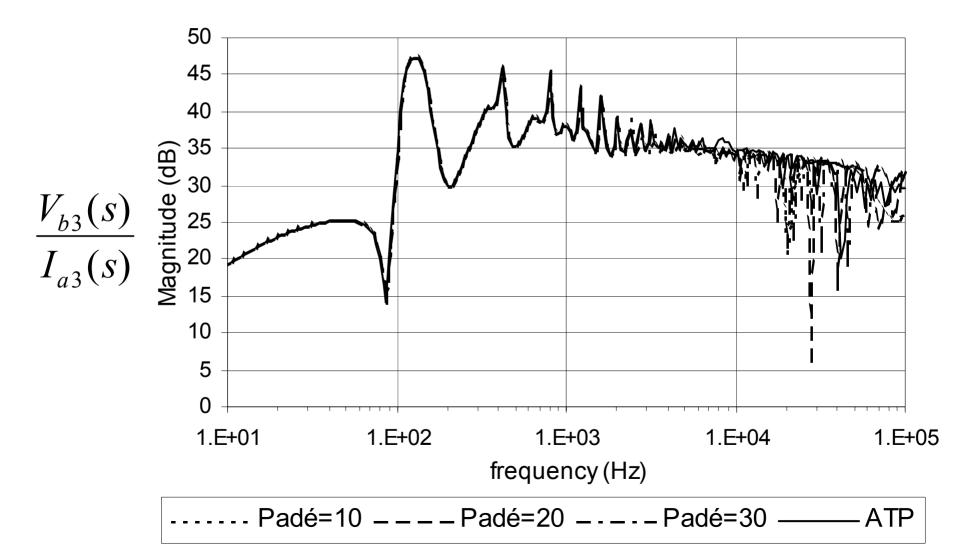




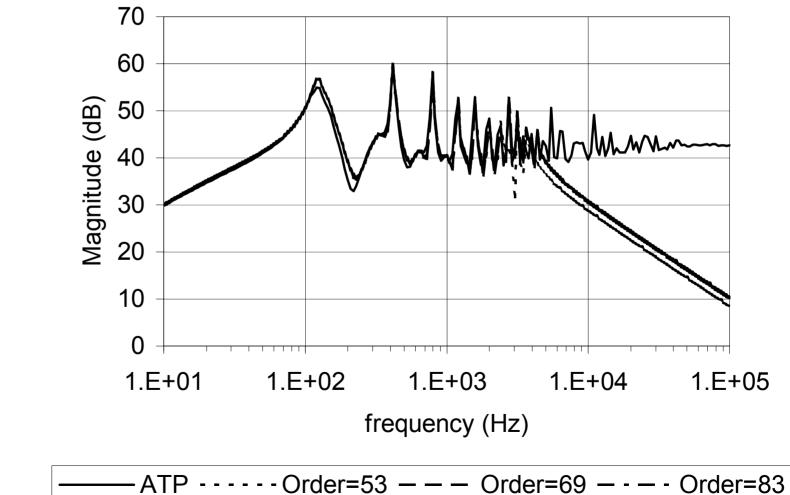
Test System

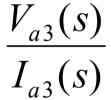




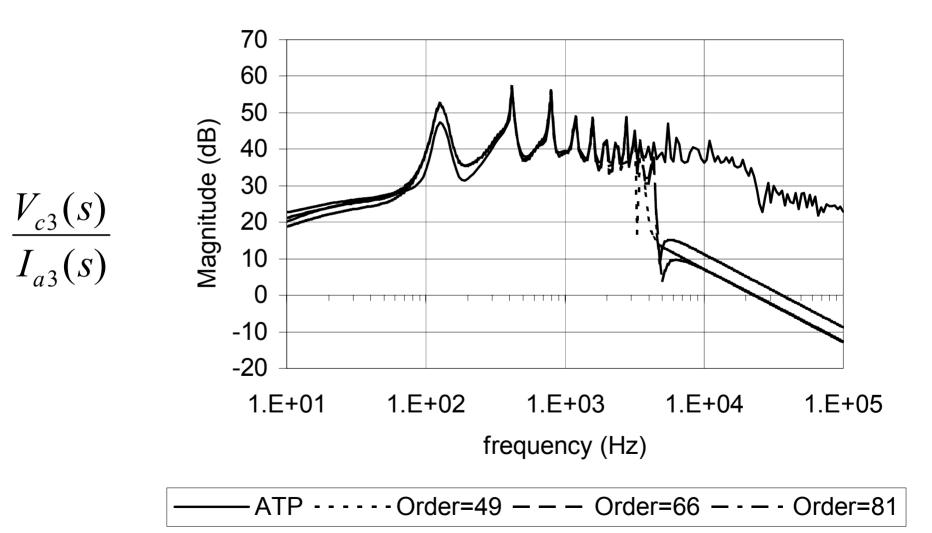


Reduced Order Equivalent





Reduced Order Equivalent



Conclusions

State-space based formulations obtain the same frequency domain results as the conventional methods based on nodal formulation and more:

- Modal analysis techniques can be used to obtain poles, zeros, transfer function residues, sensitivities, etc.
- Reduced order dynamic equivalents obtained through use of transfer function residues

Conclusions

Descriptor system approach allows:

- Simple and efficient computational implementation
- Ability to model systems of any topology and containing state variable redundancies
- Applicability to large-scale networks, due to the very sparse matrices involved and the availability of powerful sparse eigensolution algorithms applied to descriptor systems