Utilizing Transfer Function Modal Equivalents of Low-Order for the Design of Power Oscillation Damping Controllers in Large Power Systems

- N. Martins, *CEPEL*
- **F**. **G**. Silva, *IME*
- P. C. Pellanda , *IME*
- P. E. M. Quintão, FPLF
- A. Castro, *FPLF*

Panel Session on *Recent Applications of Linear Analysis Techniques*, IEEE/PES General Meeting, San Francisco, June 2005

# **Optimal Model Reduction by Balanced Truncation**

Model Error: 
$$e = \|G(s) - G_r(s)\|_{\infty}$$

## Upper Bound Error:

$$e_1 = 2\sum_r s_i$$

 $s_i$  – Hankel singular values

- n full model order
- r reduced model order

#### Drawbacks:

- does not preserve original pole-zero spectrum
- pre-conditioning to deal with unstable poles
- high computational cost

# Modal Equivalents Model Error: $e = \|G(s) - G_r(s)\|_{\infty}$

**Upper Bound Error:** 

$$e_2 = \sum_r \frac{C_i B_i}{\operatorname{Re}\{\boldsymbol{I}_i\}}$$

n – full model order

r – reduced model order

## Characteristics:

- Reduced models built with TF dominant poles and associated residues.
- •May be applied to large scale systems if efficient TF dominant pole routines are available.
- •TF zeros of the original model are not preserved. •Good reduced models are not of minimal order.



\*Proof: see e.g. M.Green and D.Limebeer, Linear Robust Control, Prentice Hall, 1995.

#### **Brazilian North-South Interconnection – with PODs**



#### **Power Plants**

- 1 Northeast
- 2 Tucuruí
- 3 Serra da Mesa
- 4 Southeast
- 5 Itaipu

6 – South

# **Monitored Variable**

**Generator Rotor Speed** 

## **Combined Input Disturbance**

+? P<sub>MEC</sub><sup>N</sup> at 3 Northeast Plants -? P<sub>MEC</sub><sup>S</sup> at 2 Southest Plants

# Eigenvalue Spectrum of Brazilian System Operational Planning Model – year 1999 (1,676 states)



The two TCSCs of the North-South Intertie have PODs to confer damping to the N-S mode.

# Step Response of Scalar Transfer Function, having 1676 states, and its 10th order Modal Equivalent

DULEC



-- Complete

15.

20.

**Reduced Order** 

5.

0.0002

0.0001

Rotor Speed (pu) 00000 100000

-0.0002

-0.0003

0.

I OLLS
 RESIDUES

 
$$I_{1,2} = -7.016 \pm 2.918j$$
 $R_{1,2} = 0.064 \angle \pm 93^\circ$ 
 $I_{3,4} = -2.996 \pm 9.390j$ 
 $R_{3,4} = 0.030 \angle \pm 44^\circ$ 
 $I_{5,6} = -0.318 \pm 1.044j$ 
 $R_{5,6} = 0.022 \angle \pm 7^\circ$ 
 $I_{7,8} = -0.346 \pm 0.580j$ 
 $R_{7,8} = 0.013 \angle \pm 175^\circ$ 

DECIDIEC

$$I_{9,10} = -0.116 \pm 0.245j$$
  $R_{9,10} = 0.002 \angle \pm 148^{\circ}$ 



10.

Time (s)

#### **Brazilian North-South Interconnection – without PODs**



#### **Power Plants**

- 1 Northeast
- 2 Tucuruí
- 3 Serra da Mesa
- 4 Southeast
- 5 Itaipu
- 6 South

## **Monitored Variable**

**Generator Rotor Speed** 

#### **Combined Disturbance**

+? P<sub>MEC</sub><sup>N</sup> at 3 Northeast Plants -? P<sub>MEC</sub><sup>S</sup> at 2 Southest Plants

## Eigenvalue Spectrum of Brazilian System Modified Planning Model – year 1999 (1,664 states)



# Step Response of Scalar Transfer Function, having 1,664 states, and its 6th order Modal Equivalent

$$y(t) \cong \sum_{i=1}^{6} \frac{R_i}{I_i} (e^{I_i \cdot t} - 1)$$





$$I_{3,4} = -2.437 \pm 0.054 j$$
  $R_{3,4} = 0.010 \angle \pm 77^{\circ}$ 

$$I_{5.6} = -0.521 \pm 2.881 j$$
  $R_{5.6} = 0.001 \angle \pm 111^{\circ}$ 

Note: system without two PODs (12 states) of the North-South Interconnection

Generator #5022

#### **Rotor Speed Mode-Shape for North-South Mode**



**Pole (eigenvalue) Spectrum of P**<sub>ij</sub>(s) / **B**<sub>ij</sub>(s)



**Pole-Zero Map of P\_{ij}(s) / B\_{ij}(s) (before cancellation)** 



## **Pole-Zero Map of** $P_{ij}(s)$ / $B_{ij}(s)$ (after cancellation)



#### **Transfer Functions of Interest**



#### **Brazilian North-South Interconnection – with one POD**



#### Power Plants/Substations

- 1 Northeast Power Plants
- 2 Imperatriz
- 3 Serra da Mesa
- 4 Tucuruí

## Monitored Variables

- ? P<sub>ii</sub> at North-South Tie
- ? B<sub>ij</sub> at North-South Tie

#### Input Disturbance

? P<sub>MEC</sub> at Tucuruí (Exogenous)

#### Dominant Poles and Associated $G_{11}(\mathbf{l})$ Residues (Reduced Models #1 and #2)

| Num. | Modes              | <b>Residues of G<sub>11</sub>(s)</b> | Model      |  |
|------|--------------------|--------------------------------------|------------|--|
| Mode | Real Imaginary     | Magnitude Phase                      | #1 #2      |  |
| 2    | -2.9445 +4.8214j   | 0.0096215 +174.41                    | YES YES    |  |
| 4    | -3.1928 +9.2818j   | 0.0052552 +17.371                    | YES YES    |  |
| 6    | -2.6033 +10.722j   | 0.0037822 +84.793                    | YES YES    |  |
| 8    | -6.4231 +8.6949j   | 0.0018626 +108.62                    | YES YES    |  |
| 10   | -4.5154 +11.747j   | 0.0012366 +106.8                     | YES YES    |  |
| 12   | -0.033534 +1.0787j | 0.00091216 +87.37                    | YES YES    |  |
| 14   | -4.9526 +7.1481j   | 0.00088318 +175.02                   | <b>YES</b> |  |
| 16   | -5.5632 +7.751j    | 0.00053183 -15.354                   | YES YES    |  |
| 18   | -0.75843 +4.9367j  | 0.00049972 +118.43                   | YES YES    |  |
| 20   | -1.4463 +1.4565j   | 0.00042096 -44.174                   | <b>YES</b> |  |
| 22   | -0.55674 +3.6097j  | 0.00039121 +109.89                   | YES YES    |  |
| 24   | -1.2786 +7.2546j   | 0.0003424 +155.51                    | <b>YES</b> |  |
| 26   | -1.2936 +1.4028j   | 0.00030419 -158.17                   | <b>YES</b> |  |
| 28   | -4.5467 +5.7598j   | 0.00020616 +89.349                   | <b>YES</b> |  |
| 30   | -1.2891 +8.5414j   | +0.0001683 +154.87                   | YES        |  |
| 32   | -0.61201 +0.35873j | 0.00015938 -130.08                   | YES YES    |  |
| 34   | -0.11506 +0.23972j | 0.000011953 +164.18                  | YES YES    |  |

$$G_{11}(s) = \frac{P_{ij}(s)}{B_{ij}(s)}$$

Model #1 – order 22

Model #2 – order 34

#### Dominant Poles and Associated $G_{12}(\mathbf{l})$ Residues (Reduced Models #1 and #2)

| Num. | Modes              | <b>Residues of G<sub>12</sub>(s)</b> | Model |           |
|------|--------------------|--------------------------------------|-------|-----------|
| Mode | Real Imaginary     | Magnitude Phase                      | #1    | <b>#2</b> |
| 2    | -2.9445 +4.8214j   | +2.0963 -89.569                      | YES   | YES       |
| 4    | -3.1928 +9.2818j   | +0.51392 +171.22                     | YES   | YES       |
| 6    | -2.6033 +10.722j   | +0.38095 -106.73                     | YES   | YES       |
| 8    | -6.4231 +8.6949j   | +0.14588 -54.574                     | YES   | YES       |
| 10   | -4.5154 +11.747j   | +0.14165 +89.765                     | YES   | YES       |
| 12   | -0.033534 +1.0787j | +1.4680 -109.36                      | YES   | YES       |
| 14   | -4.9526 +7.1481j   | +0.073477 -64.545                    |       | YES       |
| 16   | -5.5632 +7.751j    | +0.033621 +108.47                    | YES   | YES       |
| 18   | -0.75843 +4.9367j  | +0.23472 -86.159                     | YES   | YES       |
| 20   | -1.4463 +1.4565j   | +1.9988 +11.244                      |       | YES       |
| 22   | -0.55674 +3.6097j  | +0.63001 -84.887                     | YES   | YES       |
| 24   | -1.2786 +7.2546j   | +0.062051 -42.846                    |       | YES       |
| 26   | -1.2936 +1.4028j   | +1.1289 -108.72                      |       | YES       |
| 28   | -4.5467 +5.7598j   | +0.023311 -166.85                    |       | YES       |
| 30   | -1.2891 +8.5414j   | +0.093332 +109.3                     |       | YES       |
| 32   | -0.61201 +0.35873j | +1.77430 +86.623                     | YES   | YES       |
| 34   | -0.11506 +0.23972j | +0.093455 +12.098                    | YES   | YES       |

 $\frac{1}{2} G_{12}(s) = \frac{P_{ij}(s)}{P_{mod}(s)}$ 

Model #1 – order 22

Model #2 – order 34

Complex Diagonal Form and Block-Diagonal State Realizations with Related Similarity Transformation Matrix (fourth-order system example)

$$\begin{bmatrix} \underline{A} & \underline{b} \\ c & d \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{1} & 0 & 0 & 0 & | \mathbf{R}_{1} \\ 0 & \mathbf{I}_{1}^{*} & 0 & 0 & | \mathbf{R}_{2} \\ 0 & 0 & | \mathbf{I}_{2}^{*} & | \mathbf{R}_{2}^{*} \\ 0 & 0 & | \mathbf{I}_{2}^{*} & | \mathbf{R}_{2}^{*} \\ 1 & 1 & | 1 & 1 & | d \end{bmatrix} \qquad T = \begin{bmatrix} 1/\sqrt{2} & -j/\sqrt{2} & 0 & 0 \\ 1/\sqrt{2} & j/\sqrt{2} & | 0 & 0 \\ 0 & 0 & | 1/\sqrt{2} & -j/\sqrt{2} \\ 0 & 0 & | 1/\sqrt{2} & -j/\sqrt{2} \\ 0 & 0 & | 1/\sqrt{2} & -j/\sqrt{2} \end{bmatrix}$$
$$\begin{bmatrix} \underline{A}_{2} & \underline{b}_{2} \\ c_{2} & | d \end{bmatrix} = \begin{bmatrix} \underline{T}^{-1}AT & | T^{-1}b \\ c & T & | d \end{bmatrix} = \begin{bmatrix} Re(\mathbf{I}_{1}) & Im(\mathbf{I}_{1}) & 0 & 0 & Re(\mathbf{R}_{1})\sqrt{2} \\ -Im(\mathbf{I}_{1}) & Re(\mathbf{I}_{1}) & 0 & 0 & -Im(\mathbf{R}_{1})\sqrt{2} \\ 0 & 0 & Re(\mathbf{I}_{2}) & Im(\mathbf{I}_{2}) & Re(\mathbf{R}_{2})\sqrt{2} \\ 0 & 0 & -Im(\mathbf{R}_{2})\sqrt{2} \\ 0 & 0 & -Im(\mathbf{I}_{2}) & Re(\mathbf{I}_{2}) & -Im(\mathbf{R}_{2})\sqrt{2} \\ \hline \sqrt{2} & 0 & \sqrt{2} & 0 & d \end{bmatrix}$$

#### Time and Frequency Response Plots Complete and Reduced Models

#### 46 PSS but no POD controller (1,664 states)



System with TCSC Equipped with POD Controller



## **Root-Locus Branches for the Critical Poles Full-Order Model of** $G_{11}(s)$ - 1667 states



## **Root-Locus Branches for the Critical Poles** 22<sup>th</sup>-Order Modal Equivalent of $G_{11}(s)$



## **Root-Locus Branches for the Critical Poles** 34<sup>th</sup>-Order Modal Equivalent of $G_{11}(s)$



## Time Response Plots Complete (1,664 states) and 34<sup>th</sup>-Order Models POD Controller Gain varying from 900 to 4500 p.u.



#### **Step Responses for Closed-Loop System Full System (1,667 states) and Modal Equivalents**



## **Transients Appearing in POD Output Following Exogenous Disturbance, for Several POD gains**



## **Transients Appearing in POD Output Following Exogenous Disturbance, for Several POD gains**



## Conclusions

#### Modal Equivalents

- Reduced models built with TF dominant poles and associated residues.
- May be applied to large scale systems if efficient TF dominant pole routines are available.
- TF zeros of the original model are not preserved.
- Good reduced models are not of minimal order.

#### Balanced Truncation

- Good reduced models are of minimal order.
- TF poles and zeros of the original model are not preserved.
- Prohibitive computational cost for large systems.

**Balanced Truncation applied to the 34th-order modal equivalent produced a good reduced model of 7th-order.**