Extracting Dominant Oscillation Modes and their Shapes from Concentrated WAMS Measurements of Ringdown Tests in Power Systems

> Francisco Damasceno Freitas¹ Nelson Martins² Luís Filomeno de J. Fernandes¹

CRIS meeting – CEPEL, Rio de Janeiro, Brazil, March 2008

¹ University of Brasilia - Brazil
 ² CEPEL - BRAZIL

Outline

- Motivation
- Mode-shape identification process
- Identification of a SISO TF
- Identification of a SIMO TF
- Transformation from *z* to *s*-domain
- Tests and results
- Conclusions.

Motivation

- Interest in advanced identification techniques applied to Wide Area Monitoring System (WAMS)
- Time and frequency domain techniques → field measurements → dynamic system models
- Rational approximations of Transfer Function (TF)
 → fitting → time or frequency data
- Simultaneous identification of SIMO TFs
- Computation of system signatures to aid dynamic performance analysis

New England System: Mode Shapes, Time and Frequency Response Results

39 bus, 10-generator system has nine electromechanical modes and one mode of coherent return to "equilibrium" speed

	Eigenvalue	Generators with Highest Participation	
1	-0.467± <i>j</i> 8.965	36, 35	
2	–0.412 ± <i>j</i> 8.779	37	
3	–0.370 ± <i>j</i> 8.611	33	
4	–0.282 ± <i>j</i> 7.537	32, 31	
5	–0.112 ± <i>j</i> 7.095	30	
6	–0.297 ± <i>j</i> 6.956	35, 36, 31	
7	-0.283 ± <i>j</i> 6.282	31, 32, 34, 38	
8	-0.301 ± <i>j</i> 5.792	38, 34	
9	-0.249 ±j 3.686	39, 38, 34	

New England System Eigenvalues

New England System Diagram with Rotor Speed Mode Shape (-.249+j6.28)

New Eng. Syst. – Generator Powers Ringdown following 1s Pulse in Pmec of Gen # 39

New England System – Polar Plots of Rotor Speeds for a Pmec # 39 Common Input

Generator Powers Mode-Shape for New England (-.249+j3.68)

Mode-Shape of Generator Powers for New England (-.249+j3.68)

Gen. Powers Ringdown following a 1s Modal Pulse in vector Pmec (-.249+j3.68)

Gen. Power Deviations Following Modal Pulse in Vector Pmec of New England (3.68 rad/s)

Gen. Powers Ringdown following a 1s Modal Pulse in vector Pmec (-.249+j3.68)

0,334 Ger # 39 0,217 0,1 Ger # 38 Ger # 37 -0,017 -0,134 -0,251 -0,368 5,7 1,9 3,8 7,7 0,

Gen. Power Deviations Following Modal Pulse in Vector Pmec of New England (3.68 rad/s)

Rotor Speed Mode-Shape for New England (-.249+j3.68)

Rotor Speed Mode-Shape for New England (-.249+j3.68)

Rotor-Speeds Ringdown following a 1s Modal Pulse in vector Pmec (-.249+j3.68)

Rotor-Speeds Ringdown following a 1s Modal Pulse in vector Pmec (-.249+j3.68)

1,1E-4 Ger # 38 6,6E-5 1,7E-5 -3,1E-5 Ger. # 39 -8,0E-5 -1,3E-4 Ger. # 34 -1,8E-4 1,7 3,5 5,2 6,9 0.

Rotor Speed Deviations Following Modal Pulse in Vector Pmec of New England (3.68 rad/s)

Bode Plots for Correct and Corrupted Modal Vector Inputs, considering OUT = Pt Gen # 39

Gen. # 39 Power Deviations for 1s Modal Pulses (Correct and Corrupted)

Participations of Rotor Speeds (-0.0647)

Rotor Speeds Ringdown following a 10ms Modal Pulse in Pmec (-.0648)

New Eng. Rotor Speeds for 10ms Modal Pulse in Vector Pmec (-.0648)

Gen. Powers Ringdown following a 10ms Modal Pulse in Pmec (-.0648)

New Eng. Gen. Powers for 10ms Modal Pulse in Vector Pmec (-.0648)

Mode-shape identification process

- WAMS comprises many functions to obtain, manage and process data (from various monitored variables) into valuable system information
- Data concentration → Phasor Data Concentrator (PDC) → advanced signal analysis computational procedures for time-tagged measurements
- TF residues
 → verification of modal dominance****
- Generator rotor speeds → PDC → main poles and mode-shapes may be computed****

Mode-shape identification process

• Single-input Multiple-output (SIMO) system

- Perturbation in the mechanical power *Pm* of a generator → measurements of rotor speeds w1, w2, ..., wr
- G(s) formed from the LTI system, where u=Pm, y=[w1 w2 ... wr]^T

 $\dot{x}(t) = Ax(t) + Bu(t)$ $y(t) = Cx(t) + Du(t) \Rightarrow G(s) = C(sI - A)^{-1}B + D$

 Let H(z) be the truncated z-transform of a discrete sequence h(k), k=0,1,...,M (samples)

$$H(z) = \frac{Y(z)}{U(z)} = \sum_{k=0}^{M} h_k z^{-k}$$

Approximations → by rational function N<<M

$$f(z) = \frac{a_0 + a_1 z^{-1} + \dots + a_{N-1} z^{-(N-1)}}{1 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_N z^{-N}}$$

$$\widehat{H}(z) = z \left\{ \frac{a_0 z^{(N-1)} + a_1 z^{(N-2)} + \dots + a_{(N-1)}}{z^N + b_1 z^{(N-1)} + \dots + b_N} \right\}$$

• Structure of TF in terms of poles and residues

$$H\left(z\right) = z \left\{ \sum_{i=1}^{Nc} \left[\frac{\gamma_1^i z + \gamma_0^i}{z^2 + \alpha_1^i z + \alpha_0^i} \right] + \sum_{i=1}^{Nr} \left[\frac{\rho_i}{z - p_i} \right] \right\}$$

- *Nc*=number of complex poles
- *Nr*=mumber of real poles
- $\gamma_1^i, \gamma_0^i, \alpha_1^i, \alpha_0^i, \rho_i \text{ and } p_i \text{ are parameters to be determined}$
- After determining a_i and b_i, compute

$$\gamma_1^i, \gamma_0^i, \alpha_1^i, \alpha_0^i, \rho_i \text{ and } p_i$$

- Equivalent form of H(z) in the time domain $y(k) = -\sum_{j=1}^{N} b_j y(k-j) + \sum_{i=1}^{N-1} a_i u(k-i) + \xi(k), \ k = 0, 1, \dots, M$
 - The quantity $\xi(k)$ can be interpreted as a deviation between the effective measurement and the approximated value, at each sample k
 - Problem:

Minimize the function $\xi^T \xi$ for *k=0,1,...,M*

- Problem statement:
- Minimize the function $\xi^T \xi$ for $k=0,1,\ldots,M$
- Solution: $\widehat{\theta} = (\mathbf{A}_y^T \mathbf{A}_y)^{-1} \mathbf{A}_y^T \mathbf{b}_y$

- We assume that each pair input-output produces a TF H_i(z), I=1,2,...,r
- SIMO TF

$$\widehat{H}(z) = [\widehat{H}_1(z) \ \widehat{H}_2(z) \ \dots \ \widehat{H}_r(z)]^T$$

• The *ith* output can be put as

$$\widehat{Y}_i(z) = \widehat{H}_i(z)U(z) = z \frac{P_i(z)}{Q(z)}U(z), \quad i = 1, 2, \dots, r.$$

• In the discrete time domain

$$y_i(k) = -\sum_{j=1}^N b_j y_i(k-j) + \sum_{q=1}^{N-1} a_{qi} u(k-q) + \xi_i(k)$$

- Now, the *i*th output contributes with $\xi_i(k)$ for $k=0,1,\ldots,M$ and $i=1,2,\ldots,r$
- We must minimize all contributions of the type $\xi_i^T \xi_i$.

Problem statement:
$$Minf(\widehat{\theta}) = \sum_{j=1}^{r} \sum_{k=1}^{M} \xi_i(k)^2$$

where

 $\widehat{\theta} = [b_1 \ b_2 \dots b_N \ a_{01} \ a_{11} \ \dots \ a_{(N-1)1} \dots a_{0r} \ a_{1r} \ \dots a_{(N-1)r}]^T$

Transformation from z to s-domain

- Mapping function $z_i = e^{s_i T}$ where *T* is the sampling time, s_i is a pole in the *s*-domain
- For the *i*th output

$$H_i(s) = \sum_{j=1}^{\overline{N}c} \left[\frac{\overline{\gamma}_1^{ij} s + \overline{\gamma}_0^{ij}}{s^2 + \overline{\alpha}_1^j s + \overline{\alpha}_0^j} \right] + \sum_{k=1}^{\overline{N}r} \left[\frac{\overline{\rho}_{ik}}{s - \lambda_k} \right]$$

where

$$\overline{\gamma}_1^{ij}, \overline{\gamma}_0^{ij}, \overline{\alpha}_1^j, \overline{\alpha}_0^j, \overline{\rho}_{ik} \text{ and } \lambda_k$$

are calculated from the poles and residues of $H_i(z)$

For s=jw it is possible to compute a value for H_i(jw) and values for specific frequencies w_k → value of H_i(jw_k) → idea of approximated mode-shape

- 39-bus 10-generator New England system
- Input: pulse at the mechanical power of a generator
- Output: speed deviation at each generator
- The pulse has amplitude equal to 0.01 pu and duration of 1 s.
- perturbations are used at the generators #35, #36, or #39 and always 10 output speed deviation signals are identified.
- Each impulse response H_i(s) (due to input applied and the *ith* output observed) is identified

- There is a mode of frequency equal to 3.68 rad/s, which is dominant for all impulse responses.
- The full model (exact) has 65 states. It was used to generate time responses and for comparing results obtained by using the approximate model
- A 27- state model has been identified

 Perturbation at the generator #35 and output at the generator #30 : output (black) and impulse response computed (identified (blue) and exact (red))

 Dominant eigenvalues for two tests: perturbation at the generator #35 and at the #36 – all output signals are used to compute an 1-input 10-output 27-state SIMO reduced system model

mode	input #35	input #36	Exact
1	-0.249 ± 3.686	-0.249 ± 3.686	-0.249 ± 3.686
2	-0.112 ± 7.092	-0.112 ± 7.092	-0.119 ± 7.095
3	-0.281 ± 7.533	-0.281 ± 7.533	-0.282 ± 7.537
4	-0.301 ± 5.791	-0.300 ± 5.791	-0.301 ± 5.792
5	-0.283 ± 6.279	-0.281 ± 6.279	-0.283 ± 6.282
6	-0.296 ± 6.954	-0.295 ± 6.955	-0.297 ± 6.956
7	-0.370 ± 8.606	-0.370 ± 8.606	-0.370 ± 8.611
8	-0.413 ± 8.771	-0.411 ± 8.773	-0.412 ± 8.779
9	-0.466 ± 8.959	-0.466 ± 8.959	-0.467 ± 8.964
10	-0.786 ± 1.874	-0.750 ± 1.832	-0.729 ± 1.771
11	-0.067	-0.067	-0.067

Test: perturbation at the generator #35 - magnitude of TF

Test: perturbation at the generator #35 - values of real(H_i(j3.68)) and imag(H_i(j3.68)) – effective and identified => approximated mode-shapes

 Test: perturbation at the generator #36 - values of real(H_i(j3.68)) and imag(H_i(j3.68)) – effective and identified => approximated mode-shapes

Test: perturbation at the generator #35 - values of real(res(H_i(j3.68))) and imag(res(H_i(j3.68))) – effective and identified residues => real part are nears, small imaginary contribution => rotation: exact and identified

Test: perturbation at the generator #35 - values of real(res(H_i(j5.792))) and imag(res(H_i(j5.792))) – effective and identified residues => real part are nears, small imaginary contribution => rotation: exact and identified

 Test: perturbation at the generator #35 - SVD plot – modes are indicated at Tab. I – for this input the most dominant is the mode 2 of frequency equal to 7.09 rad/s. But other modes are identified

 Test: perturbation at the generator #35 - SVD plot for H(-0.35+jw) - modes 2 and 6 are closer – all dominant modes are identified and is observed good matching between exact and identified model

Concluding Remarks (1/2)

- The described technique identifies, from ringdown tests and availability of multiple PMU's, a SIMO model and its dominant poles with associated mode-shapes.
- Identifies major rotor speed deviations from transients induced by a small pulse in the power output of a generating station or load/HVDC link.
- Tests made on 39-bus, 10-gen New Eng system model.
- Results are exploratory but indicated the algorithms perform well for ringdown tests, in the absence of noise.
- Work is now being extended to a large BIPS model => 150 power plants and more than 3000 states.
- Other probing signals and measurement noise will be considered next. Focus will then turn to oscillation damping assessment from multiple PMU's using only ambient noise information.

Concluding Remarks (2/2)

Topics discussed in this presentation

- Modal Analysis
- System Identification (Ringdown tests, numerical aspects of algorithms, etc)
- Selection of probing signals and monitored variables
- Online and off-line monitoring of oscillation damping and mode-shapes
- Model Reduction for SISO and SIMO systems

Many other topics related to WAMS, WAPS, WACS were not discussed in this presentation