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Abstract: This paper describes a detailed s-domain model for 
long transmission lines to be used in the modal analysis of ac 
networks. Structural information on the system may be obtained 
with modal analysis, which nicely complement those obtained by 
the traditional time and frequency response analyses. The s-
domain model considers the distributed parameters of the 
transmission lines and also their frequency dependency, taking 
into account the skin effect and ground return path influence. 
Modal analysis results are included. 
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I. INTRODUCTION 

Networks containing detailed transmission line models 
can be analyzed using different approaches such as time 
domain simulation [1,2,3] and frequency scan [2,3]. 

Additional information on the system may be obtained 
from modal analysis, which complement those obtained by 
the traditional time and frequency response techniques. 
This is system structural information, such as series and 
parallel resonances and their sensitivities to parameter 
changes. Reduced order linear models for the system may 
also be obtained with the use of modal analysis. 

Modal analysis of ac networks, incorporating the RLC 
transients, is traditionally carried out using state space 
models [4]. Recent papers [5] have proposed using the 
descriptor systems approach to model ac networks, which 
automatically deals with state variable redundancies and 
leads to more efficient computer implementations. Both 
approaches have to use approximations based on ladder 
circuits or Padé polynomials when modeling long 
transmission lines, which usually cause severe problems. 

The modeling of frequency dependent transmission lines 
in ac networks for modal analysis is best carried out in the 
s-domain. The ac network may be modeled as a nodal 
admittance matrix in the s-domain, Y(s), as described in 
[6]. Robust and efficient eigensolution algorithms specially 
suited to the Y(s) model are developed in [7]. These 
algorithms require the determination of the Y(s) 
derivatives with respect to s. 

This paper describes a detailed transmission line model 
that may be used for the modal analysis of ac networks 
represented in the s-domain. The frequency dependency of 
transmission line parameters is considered, including the 
conductor skin effect and the ground return path. Modal 
analysis results are presented for the described line model. 

II. S-DOMAIN MODEL 

The ac network dynamic equations may be assembled as 
a nodal admittance matrix in the s-domain, Y(s). Each 
diagonal element of this matrix is equal to the sum of the 

operational admittances (functions of s) of all the elements 
connected to a given node. The off-diagonal elements are 
equal to the negative value of the sum of the operational 
admittances of the branches connecting the corresponding 
nodes. This matrix must be reassembled for each complex 
frequency of interest. The following equation is formed for 
a general ac network [6,7]: 
 ( ) ivY =⋅s  (1) 

where Y(s) is the system nodal admittance matrix in the s-
domain, v the vector of bus voltages and i the vector of 
injected currents. 

Equation (1) may be particularized for single-input-
single-output systems, as presented in (2), where the input 
variable ik is the injected current in bus k while the output 
variable vj is the voltage at bus j . Vector b is comprised of 
zero elements except for the k-th element that has a unity 
value. The row vector c is also comprised of zeros except 
for the j-th element, which is equal to unity: 
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One should note that the number of system states is, in 
general, considerably larger than the dimension of matrix 
Y(s). This is due to the fact that every system element 
connected to a node of Y(s) is a second or higher order 
operational admittance (RLC branches) or analytical 
functions in s which describe the dynamics of the 
transmission lines. 

As an example, a RLC branch has the following 
operational admittance: 
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Assuming this RLC branch connects nodes i and j, the 
above elements must be added to the diagonals (i,i) and 
(j,j) of Y(s). The same elements must be added, with 
negative signs, to the off-diagonal elements (i,j) and (j,i). 

The eigensolution methods proposed in [7] require the 
calculation of the derivative of Y(s) with respect to s. The 
derivative of Y(s) is built following the same logic used to 
assemble Y(s), with the difference that the derivatives of 
the operational admittances of the branches are now used. 

The derivative of the RLC branch admittance is: 
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III. MODAL ANALYSIS FOR S-DOMAIN MODELS 

Manipulation of the two equations in (2) yields the 
relationship between the system input (vj) and output (ik) 
variables, also known as the transfer function G(s): 

 ( ) ( )[ ] bYc ⋅⋅== −1s
u
ysG  (5) 

Substituting s for j ω , one obtains the network harmonic 
impedance G(j ω), which is used to calculate the frequency 
scan of the system. These methods based on the building 
of Y(j ω), for a set of discrete values of  ω are widely used 
in harmonic analysis programs. The s-domain modeling is 
more general because it uses the complex variable s, 
instead of the purely imaginary j ω. The s-domain 
approach allows the modal analysis of the system [7]. 

The time response of y to an impulse disturbance 
applied in u is equal to the inverse Laplace transform of 
G(s), considering zero initial conditions in all system 
states. This time response will be of the form: 
  (6) ∑ ⋅λ⋅=
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where λi are the poles of G(s) and Ri their associated 
residues. The poles of G(s) are those values of s that 
produce singularity in G(s). Every pole of G(s) causes the 
matrix Y(s) to become singular (det[Y(s)] = 0), and 
therefore not inversible. Any chosen transfer function has 
the same set of poles, since they are completely defined by 
the matrix Y(s). 

The s-domain algorithm for the calculation of the 
dominant poles of a transfer function is given below [7]: 

  (7) 
( )( ) ( )

( ) ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −λ
10

0v

c

bY
k

kk

u

  (8) 
( )( ) ( )

( ) ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

λ
10

0w

b

cY
k

k

t

ttk

u

 
[ ] ( )( ) )()(

)(
)(

k
ktk

k
k

ds
d
u

vYw ⋅
λ

⋅

=λΔ  (9) 

After choosing an estimate λ(0) for the pole, one should 
build the matrix Y(λ(0)) and its derivative with respect to s 
and solve the linear systems (7) and (8), obtaining the 
vectors v and w and scalar u for the first iteration. The 
correction Δλ may then be calculated using (9) as a 
function of u, v, w and the derivative of the matrix Y(s). 
The updated value of λ  is given by: 

  (10) ( ) ( ) )(1 kkk λΔ+λ=λ +

This procedure is iterated until the modulus of the 
increment Δλ becomes smaller than a specified tolerance. 
The approximation for the transfer function residue at the 
(k + 1) iteration, associated with the pole λ is given by [7]: 
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Once the pole is converged, the expression (11) 
provides an accurate value for the residue. 

IV. DISTRIBUTED PARAMETER TRANSMISSION 
LINE MODELING 

The single-phase or single-mode model of a 
transmission line has the following admittances [8]: 
 ( )lyy cs ⋅γ⋅= coth  (12) 
 ( )lyy cm ⋅γ⋅= csch  (13) 

where ys is the admittance to be added to the diagonals 
of Y(s) while ym is the admittance to be added to the  
off-diagonal terms, with negative sign. The line 
admittances are functions of its length l, the propagation 
constant γ and the characteristic admittance yc. The 
constants γ and yc shown in (14) are functions of the line 
parameters per unit length: longitudinal impedance per unit 
length, Zu , and transversal admittance per unit length, Yu , 
which depend on s. 
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The derivatives of the line admittances with respect to s 
are given by: 
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Some of the advantages of using the s-domain 
representation include the fact that there is no need to 
define the network state variables or to derive the dynamic 
equations for the various system elements as a function of 
the states. Note also that, in the case of the distributed-
parameter transmission line there is an infinite number of 
states, due to the inherent characteristics of the hyperbolic 
functions in the line model. Approximate, finite-order, 
state space or descriptor system models exist for the 
distributed-parameter transmission line, using ladder 
networks or polynomial approximations of the Padé type 
[9]. However, as one attempts to improve the model’s 
accuracy by increasing the model order, there appears 
numerical problems, extremely large system models and 
extraneous results, as demonstrated in [10]. The s-domain 
model, on the other hand, does not present any of these 
three disadvantages. 

V.  TRANSMISSION LINE PARAMETERS 

The line parameters per unit length of longitudinal 
impedance Zu and transversal admittance Yu are obtained 
from the reduction of the matrices Zu and Yu containing 
the  parameters of the various individual line conductors 
[11]. 

The quasi-stationary approximation, which assumes the 
capacitance matrix C to be independent of s, is quite 

 



 

adequate to the present application. The admittance matrix 
may then be expressed by: 
 CYu ⋅= s  (19) 

The derivative of matrix Yu with respect to s is, 
therefore, equal to the capacitance matrix C. 

The longitudinal impedance matrix comprises the sum 
of three terms: 

 ( ) ( ) (gie
u ZZZZ ++= )  (20) 

The term Z(e) corresponds to the external impedance, 
assuming ideal conductors and no ground losses. The term 
Z(i) describes the internal conductor impedances, and Z(g) 
contains the corrections needed due to the non-ideal 
ground return path. 

The matrix Z(e) is given by the product of s and the 
external inductance matrix (L(e)) which does not depend on 
s (the quasi-stationary approximation): 

  (21) ( ) ( )ee LZ ⋅= s
The derivative of the term Z(e) with respect to s is, 

therefore, equal to the external inductance matrix. 
The external inductance will be proportional to the 

inverse of the capacitance matrix, as a result of the quasi-
stationary approximation: 
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where μ0 and ε0 are respectively the magnetic 
permeability and electric permittivity of the air. 

The term associated with the conductor internal 
impedances is a diagonal matrix and a function of s. The 
conductor internal impedances may be modeled in two 
forms, either utilizing Bessel functions [12] or the complex 
depth concept [13]. 

Both formulations consider the conductors to be 
represented by a annular cross-section of external radius re 
and internal radius ri , which defines the dimensions of the 
aluminum external part and the steel core of the ACSR 
conductors. It is here assumed, as in most other 
applications, that the current does not flow through the 
steel core. This turns simpler the mathematical 
formulation, which is described below. The internal 
impedance of the conductor is given by [12]: 
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I 0, I 1 are the modified Bessel functions of first kind 
while K 0 and K 1 are the modified Bessel functions of 
second kind. Indexes 0 and 1 represent the order of the 
functions. The parameter σ is the conductor conductivity 
and μ is the conductor magnetic permeability. 

The derivative with respect to s of the internal 
impedance is given by:  
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The derivatives of the modified Bessel functions are 
given by: 
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where the indexes 0, 1 and 2 represent the order of first 
kind (I) or second kind (K) modified Bessel functions. 

The internal impedance can alternatively be modeled 
using the complex depth p [13]: 
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The internal impedance is given by [13]: 

 ∞+= zzzi 0  (26) 
where z0 is the conductor impedance at zero frequency 

and z∞ the conductor impedance as the frequency 
approaches infinity. The impedance z0 is the dc resistance, 
being given by: 
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The approximation z∞ for the impedance at high 
frequencies is given as a function of the complex depth p : 
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The derivative of the internal impedance with respect to 
s is given by: 
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The matrix Z(g) containing the correction due to the 
finite conductivity of the ground return path can be 
obtained from the Carson formulas [14]. The Carson 
integrals can be solved by series. This approach would 
yield large expressions for the derivatives with respect to s. 
A simpler model that leads to good results and is used in 
this paper utilizes the concept of the complex depth for the 
ground return [15]. The ground return path correction 
terms obtained by this method can be added to the external 
impedance, as shown below:  
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where p is the complex depth given in (25) with σ equal 
to the earth conductivity. The earth electric permittivity ε 
can also be included using (32). 
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The derivatives of these impedances with respect to s 
are given by:  
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s

p
ds
dp

2
−=  , when neglecting ε in (32). 

The equivalent homopolar and non-homopolar 
parameters Zu and Yu can be obtained from reductions in 
the line parameter matrices, as described in [11]. The 
matrix derivatives with respect to s are obtained utilizing 
the derivative rules to the expressions produced during this 
matrix reduction. 

In case the homopolar and non-homopolar modes are 
considered modes or quasi-modes, there exist several 
formulas, which allow the approximate computation of 
these parameters [8,11]. These formulas allow a deeper 
understanding of how the line parameters change with the 
geometrical configuration, require less data and lead to an 
easier computational implementation. The homopolar and 
non-homopolar capacitances C can be approximately 
computed from these formulas and the admittances Yu are 
given by the product of s and the capacitances:  
 11 CsYu ⋅=  (35) 
 00 CsYu ⋅=  (36) 

where indices 0 and 1 represent homopolar and non-
homopolar quantities respectively. 

The homopolar and non-homopolar longitudinal 
impedances are given by the sum of the three terms below 
(external, internal and ground correction impedances): 
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The external impedance is given by the product of s and 
the external inductance L(e) , which does not depend on s: 
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The approximated formulas for the homopolar and non-
homopolar external inductances can be obtained from the 
capacitances, based on property (22): 
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The internal impedance term is equal for the homopolar 
and non-homopolar components, and is obtained by direct 
division of the conductor impedance in (23) by the number 
of subconductors in the bundle. 
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where ns is the number of subconductors in the bundle. 
The derivative of the internal impedance may be similarly 
obtained: 
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The correction for the effects of the ground return path 
can be considered together with the external inductance 
utilizing approximate formulas based on the geometrical 
mean distances [8,11] considering the complex plane of 
the return path [15]. This is similar to the method utilized 
in the assembling of the impedance matrices in (30) and 
(31). 

The lack of specific geometric information and in cases 
where it is acceptable an additional small error, the 
following approximate formulas can be used. They are 
valid for medium-range frequencies (up to a few kHz) for 
usual values of ground conductivity. These formulas, when 
separately considered from the external inductance, are: 
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where nf is the number of phases in the line, H is twice 
the value of the geometric mean height of the  conductors 
and H' the geometric mean distance between the 
conductors and their mirror images reflected in the  ground 

 



 

plane. The distances H and H' may be utilized as 
adjustable parameters in the model. These parameters are 
adjusted such that the line behavior may be better 
represented as a function of frequency. 

VI. RESULTS 

Example results will be shown considering a 300 km 
long, 500 kV transmission line, with the following non-
homopolar parameters (positive sequence) at 60 Hz: 

mH/km862.0  /km028.0 ⋅+Ω= sZu F/km0138.0 μ⋅= sYu  
A line energization study was carried out, applying a 

sinusoidal voltage disturbance at the sending end (input 
variable of G(s)) and monitoring the voltage at the 
receiving end (output variable of G(s)), which is kept 
open. 

The frequency response plot of G(s), shown in Fig. 1, 
was obtained when neglecting the frequency dependency 
in the line parameters. Fig. 2, on the other hand, shows the 
same transfer function plot when the line internal 
impedance is modeled by Bessel functions. The internal 
impedance were obtained for a line model having 3 
subcondutors per bundle, with 14.8 mm of external radius 
and 3.70 mm of internal radius. 

It is clearly seen that the frequency dependency of the 
internal impedance caused a significant increase in the 
damping of the higher frequency poles. Table 1 shows the 
poles, computed by the dominant pole algorithm, for the 
two cases (considering or not the frequency dependency of 
the internal line impedance). 

Table 1 - Comparison of Line Poles for Two Models 
Poles (rad/s) 

(without frequency 
dependency) 

Freq. 
(Hz) 

Poles (rad/s) 
(with frequency 

dependency) 

Freq. 
(Hz) 

−16.241 + j  1518.0  242 −18.758 + j 1506.0  240 
−16.241 + j  4554.3  725 −29.508 + j 4528.7  721 
−16.241 + j  7590.6 1208 −37.306 + j 7557.5 1203 
−16.241 + j 10626.8 1691 −43.346 + j 10587.6 1685 

The transfer function residues associated with the line 
poles were also obtained and are listed in Table 2. 

Table 2 - Residues of G(s) for Various Poles 
Poles (rad/s) Freq. (Hz) Residue (pu) 

−18.758 + j 1506.0  240 +3.145 − j 959.96 
−29.508 + j 4528.7  721 −2.980 + j 963.62 
−37.306 + j 7557.5 1203 +2.117 − j 964.37 

−43.346 + j 10587.6 1685 −1.771 + j 964.66 

The frequency response of the reduced model 
incorporating the first four pairs of complex-conjugate 
poles is an excellent approximation of the exact G(jω) for 
frequencies up to 2,000 Hz (visually coincident with 
Fig. 2). The frequency response of the reduced model, 
incorporating only the first three pairs of complex-
conjugate poles (see Fig. 3) is an excellent approximation 
of G(jω) for frequencies up to 1,300 Hz. 

The line was energized by a 60 Hz sinusoidal signal 
applied to the line sending end, the Laplace transform for 

this signal is given by (47), where ωs is the nominal 
angular frequency. 

 ( ) ( ) ( )
22

sin
s

s
s

s
sUttu

ω+

ω
=⇒ω=  (47) 

The residues of the poles for this sinusoidal disturbance 
may  then  be  obtained  by multiplying  the  residues of 
the 
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Fig. 1 - Frequency response of G(s) when neglecting the 
frequency dependency in the line parameters. 
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Fig. 2 - Frequency response of G(s) when considering frequency 
dependency in the internal impedances. 
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Fig. 3 - Approximate frequency response of G(s) for a 6th order 
model of the transmission line. 

transmission line transfer function (Table 2) by the 
Laplace transform of the sine function in (47), as shown in 
(48). 
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Table 3 shows the numerical values for the residues of 
the line transfer function G(s) already multiplied by the 
sinusoidal disturbance. 

 



 

 

Table 3 - Residues of G(s) multiplied by the sinusoidal input 
Pole (rad/s) Freq. (Hz) Residue iR  (pu) 

−18.758 + j  1506.0  240 +0.00396 + j 0.17015 
−29.508 + j  4528.7  721 −0.00018 − j 0.01783 
−37.306 + j  7557.5 1203 +0.00005 + j 0.00638 
−43.346 + j 10587.6 1685 −0.00002 − j 0.00325 
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Fig. 4 - Four Individual Modal Responses 
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Fig. 5 - Transient response of the system 
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Fig 6 - Energizing receiving end voltage response 

Each pole and associated residue in Table 3 produces a 
damped sinusoid in the time domain. Note that the higher 
frequency poles have smaller residues, as expected. Fig. 4 
presents the four individual modal responses. The sum of 
these four modal responses will produce the transient 
response of the system, as presented in Fig. 5. 

The system steady-state response is given by a 
sinusoidal signal of 60 Hz, whose modulus and phase are 
determined by the transfer function G(j ωs) multiplied by 
the amplitude of the input. In the results below a 1 pu 
amplitude for the sinusoidal input was assumed:  

( ) o40.0/0827.100758.00827.1 =−= jjG sω  
The steady state overvoltage due to Ferranti effect is, 

then, equal to 8.27%. 
The complete system response is given by the sum of 

the transient and steady-state components, and is shown in  
Fig. 6. Note the time scale of Fig. 6 (0.15 s) is different 
from that in Figs. 4 and 5 (0.05 s). 

One should note that the initial overvoltage transients 
are dominated by the pole of 240 Hz and its associated 
residue. Modal analysis allows monitoring this residue and 
other sensitivities [16], to determine means to reduce 
transients. 

VII. CONCLUSIONS 

A detailed transmission lines model was developed for 
the modal analysis of ac networks. The frequency 
dependency of line parameters was considered, including 
skin effect and ground return. The modal analysis results 
clearly show the importance of considering these 
frequency dependent effects. The s-domain modeling 
approach was shown to be more suitable to the modal 
analysis as compared to state space or descriptor system 
approaches. In these last two approaches, the frequency 
dependency and the distributed nature of the line 
parameters may be only approximately modeled. 
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