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Objectives (1/1)

n Description of some features of the HarmZs program 
for analysis of harmonic problems in power systems.

n Review of some basic concepts of the conventional 
and modal analysis needed for understanding the 
methodologies computationally implemented in the 
program.



Network Modeling Techniques (1/2)

n The HarmZs program utilizes two recent electrical 
network-modeling techniques, named Descriptor 
Systems and Y(s) matrix.

n These techniques allow electrical network analyses 
over all the complex plane s instead of just over the 
imaginary “jω” axis.

n In this expanded domain modal and conventional 
analyses can be performed.

n Modal analysis provides an important set of dynamic 
system information that is hard to obtain using the 
two conventional methods: time simulation and 
frequency response.



Network Modeling Techniques (2/2)

n This information includes the natural oscillation 
modes, identification of equipment that more heavily 
participate in these modes, modal sensitivities with 
respect to parameters changes, etc.

n May be effectively used to improve the harmonic 
performance of electrical networks.



Descriptor System (1/1)

n Main Characteristic
v The equations  are written in the time-domain.

n Main Advantage
v The complete set of poles and zeros can be 

simultaneously calculated using the QZ 
decomposition or one at a time using iterative 
methods.

n Main Disadvantage
v Difficulties in modeling frequency dependent 

parameters.



Matrix Y(s) (1/1)

n Main Characteristic
v The equations  are written in the s-domain.

n Main Advantage
v Modeling of frequency dependent parameters is 

very easy.

n Main Disadvantage

v The poles and zeros can only be calculated one at 
a time using iterative methods.



Test System (1/3)
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Test System (2/3)

n System Modeling



Test System (3/3)

n Test system parameter values referred to 20 kV

Inductance (mH) Resistance (Ω) Capacitance (µF) 

L1 8.0 R2 80.0 C1 23.9 

L2 424.0 R3 133.0 C2 8.0 

L3 531.0 R12 0.46 C3 11.9 

L12 9.7 R13 0.55   
L13 11.9     



Poles, Zeros and Frequency Response Plot (1/6)

n Properties

v If sk = σk + jωk is a system pole or a zero of the 
transfer function G (s) , then G(σk + jωk) tends to ∞
or is equal to 0, respectively. However, G (jωk) does 
not approach ∞ or is equal to 0.

v |G(jωk)| has a high value (very close to a local 
maximum) or a low value (very close to a local 
minimum) depending on whether sk is a pole or a 
zero.



Poles, Zeros and Frequency Response Plot (2/6)

n Test system poles and zeros of the self-impedances

 Zeros 

 
Poles 

Bus 1 Bus 2 Bus 3 

1 
-2.90.08 

± j 1583.6 
-338.52 

± j 2670.9 
-255.47 

± j 2084.9 
-415.26 

± j 2402.1 

2 
-507.00 

± j 3069.1 
-804.43 

± j 3550.6 
-93.698 

± j 3975.6 
-398.38 

± j 4424.9 

3 
-345.88 

± j 4535.7 
0 0 0 

4 -0.98914 -1.0091 -0.99428 -1.0357 

5 -1.0419 -1.0549 -26.151 -27.820 



Poles, Zeros and Frequency Response Plot (3/6)

n Pole and zero frequencies in Hz

 Zeros 

 
Poles 

Bus 1 Bus 2 Bus 3 

 1 2 3 1 2 1 2 1 2 

f(Hz) 252 488 722 425 565 332 633 382 704 

( )
π

=
2

Im
HzinfrequencyzeroorPole ks

Test System



Poles, Zeros and Frequency Response Plot (4/6)

n Self-impedance of bus 1
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Poles, Zeros and Frequency Response Plot (5/6)

n Self-impedance of bus 2

0
10
20
30
40
50
60
70
80

0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

Im
pe

da
nc

e 
( Ω

)



Poles, Zeros and Frequency Response Plot (6/6)

n Self-impedance of bus 3
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Dominant Poles and Reduced Models (1/4)

n The poles that have the largest associated residue 
moduli for a chosen transfer function are defined as 
dominant poles of that transfer function.

n If these transfer function poles are fairly close to the 
imaginary axis or, in other words, if they have 
relatively small real parts, they will produce a high 
peak in the frequency response magnitude plot. 



Dominant Poles and Reduced Models (2/4)

n Partial fraction form of a transfer function
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n Considering only the dominant poles of G(s)

( ) d
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Ω → Set of dominant poles

n → number of poles



 Residue moduli 

 
Poles 

Bus 1 

1 -2.90.08 ± j 1583.6 (252 Hz) 8.1782 × 103 

2 -507.00 ± j 3069.1 (488 Hz) 2.5161 × 103 

3 -345.88 ± j 4535.7 (722 Hz) 12.237 × 103 

4 -0.98914 1.9039 × 10-4 

5 -1.0419 6.5180 × 10-5 

n Dominant poles
and reduced model 
of the bus 1
Self-impedances

Dominant Poles and Reduced Models (3/4)
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n Reduced model of bus 3 self-impedance

Dominant Poles and Reduced Models (4/4)
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Capacitor Zero 1 Zero 2 

C1 4.3708 – j 9.9007 -4.3708 – j 63.708 

C2 0 0 

C3 11.523 − j 67.108 15.024 – j 37.988 

Sensitivities of the zeros of the bus 2
self-impedance (1 + j rad)(s-1/µF)

Pole and Zero Sensitivities (1/2)

The sensitivity of an eigenvalue sk (pole or zero) with 
respect to a system parameter pj is defined by jk ps ∂∂ . 



Series Resonances

n Self-impedance of bus 2 for three values of C2

Pole and Zero Sensitivities (2/2)

C2 = 8 µF

C2 = 12 µF

C2 = 16 µF
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Harmonic Problem Definition (1/1)
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f(Hz) 550 650 1150 1250 1750 1850 
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i2 (%) 9.09 7.69 4.35 4.00 2.86 2.70 



Capacitance Pole 2 (-507.00 + j 3069.1) Pole 3 (-345.88 + j 4535.7) 

C1 7.1822 – j 3.1098 –12.8283 – j 54.1654 

C2 13.437 – j 91.449 81.5907 – j 87.1324 

C3 18.926 − j 60.418 -3.6843 – j 14.9227 
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Harmonic Problem Solution (1/2)

Sensitivities of the poles 2 and 3 (1 + j rad)(s-1/µF)



Harmonic Problem Solution (2/2)
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Conclusions (1/1)

n Description of some features of the HarmZs program for 
analysis of harmonic problems in power systems.

n Review of some basic concepts of the conventional and modal 
analysis needed for understanding the methodologies 
computationally implemented in the program:

v Network-modeling methodologies suitable for modal and 
conventional analysis.

v Calculations and concepts of poles, zeros and their 
sensitivities to system parameter changes.

v Pole residues, dominant poles and reduced models as 
important concepts to help obtaining low order dynamic 
network equivalents (modal equivalents) of large scale power 
system.

v Formulation of a harmonic problem example using a test 
system and its solution by modal analysis. 



Remarks (1/1)

n Basically  there are three forms of improving the harmonic 
performance of a system: Filtering harmonic currents, 
improving the performance of nonlinear loads and system 
modifications. This paper is a contribution for the third form.

n System modifications seems to be particularly suitable for 
reducing harmonic distortions in larger systems which have 
several and spread nonlinear loads.


