Published in IEEE Transactions on Power Systems, New York, Vol.18, No.1, p.152-159, February 2003

Computing Dominant Poles of Power System Multivariable Transfer Functions

Nelson Martins, CEPEL, Rio de Janeiro, Brazil
Paulo E. M. Quintão, FPLF/PUC-RJ, Rio, Brazil

Acknowledgements

- Alex de Castro, FPLF-PUC/RJ
- Herminio Pinto, previously with CEPEL
- Juan Sanchez-Gasca, G.E. Power Systems, NY, USA
- Mike J. Gibbard, Univ. Of Adelaide, Australia

Introduction (1/3)

- Recent developments and increased use of modal analysis in studies of electrical, mechanical and civil engineering as well as in many other fields
- Good opportunities for use of modal equivalents in power system dynamics and control, harmonic analysis and real-time simulations of electromagnetic transients
- The concept of transfer function pole dominance has been little exploited in Numerical Linear Algebra
- First power system applications: AESOPS algorithm [Byerly, 1978; Kundur, 1990] and Selective Modal Analysis [Pagola, 1988]

Introduction (2/3)

- Need for improved numerical robustness and more general eigensolution selectivity in small-signal stability analysis and power system controller design
- Clever implementation of Newton- Raphson algorithm applied to specified transfer functions: the Dominant Pole Algorithm (DPA) described in [Martins et alli, 1996]. Solves for one eigenvalue at a time.
- A generalization of DPA later described in [Martins, 1997], the Dominant Pole Spectrum Eigensolver (DPSE), can simultaneously solve for several dominant poles of a given scalar transfer function F (s)

Introduction (3/3)

- The Multivariable Dominant Pole algorithm (MDP), described in this paper, is a generalization of the DPA and solves for dominant poles of a given multivariable (MIMO) transfer function F (s)
- MDP is a clever implementation of the Newton-Raphson algorithm applied to a given matrix function $\mathrm{F}(\mathrm{s})$.
- MDP is a one-eigenvalue-at-a-time method, but makes efficient use of deflation techniques to find subdominant poles of $\mathrm{F}(\mathrm{s})$.

The MDP Algorithm

Basic Concepts Leading to Modal Equivalents of Scalar F(s)

Partial Fraction

Expansion

$$
F(s)=\sum_{i=1}^{n} \frac{R_{i}}{s-\lambda_{i}}
$$

Step Input

$$
y(s)=F(s) \cdot \frac{1}{s} \approx \sum_{i=1}^{p} \frac{R_{i}}{s-\lambda_{i}} \cdot \frac{1}{s}
$$

Inverse Laplace
Transform

$$
y(t) \approx \sum_{i=1}^{p} \frac{R_{i}}{\lambda_{i}}\left(e^{\lambda_{i} \cdot t}-1\right)
$$

Modal Equivalents of Multivariable Transfer Functions

- An $m \times m$ transfer function $\mathbf{G}(s)$ may be expanded in terms of the system poles and associated residue matrices that also has dimension $m \times m$:

$$
\mathbf{G}(s)=\sum_{i=1}^{n} \frac{\mathbf{R}_{i}}{s-\lambda_{i}}
$$

- The truncated sum below is the modal equivalent:

$$
\mathbf{G}(s) \approx \sum_{i=1}^{p} \frac{\mathbf{R}_{i}}{s-\lambda_{i}}, \text { where } p \ll n
$$

MDP Results on the North-South Brazilian System (Power System Operations Model for year 2,000)

- 2370-Bus, 3401 lines, 60,000 MVA generating capacity
- 123 machines, 99 speed-governors, 46 PSSs
- 4 SVCs, 2 TCSCs, one 6,000 MW HVDC link
- Descriptor system matrix of order 13,062 with 1,676 state variables
- Multivariable Transfer Function $\mathbf{G}(s)$ is a (8×8) matrix

Matrix Structure of the N -S Interconnection

Descriptor System Matrix has 13 K lines and 48 K nonzero elements

QR Eigensolution Results

Eigenvalue Spectrum of North-South Interconnection

MDP Results for $\mathbf{G}(\mathrm{s})$

Multivariable Transfer Function $\mathbf{G}(s)$ has Dimension (8×8)

Dominant Pole-Zero Spectrum of $\mathbf{G}(\mathrm{s})_{8 \times 8}$

- Full Model has order 1,676, but there is a large pole-zero cancellation

Poles pictured by asterisks and zeros by black circles

MDP Results for $\mathbf{G}(\mathrm{s})_{8 \times 8}$

Performance of the MDP Algorithm	
Initial Shift s	Converged Eigenvalues
$-0.0759+0.5 \mathrm{j}$	$-0.1158+0.2445 \mathrm{j}(12)$
$-0.1517+1.0 \mathrm{j}$	$-0.3179+1.0437 \mathrm{j}(6)$
$-0.4551+3.0 \mathrm{j}$	$-0.5199+2.8814 \mathrm{j}(6)$
$-0.9103+6.0 \mathrm{j}$	$-1.2098+8.1765 \mathrm{j}(7)$
$-1.2137+8.0 \mathrm{j}$	$-1.1129+8.0075 \mathrm{j}(4)$
$-1.2896+8.5 \mathrm{j}$	$-1.2902+8.5407 \mathrm{j}(6)$
$-1.3654+9.0 \mathrm{j}$	$-1.4778+8.2550 \mathrm{j}(6)$
$-2.2757+15.0 \mathrm{j}$	$-2.8323+10.3949 \mathrm{j}(6)$

The numbers within parenthesis denote iterations required for tight convergence (1.0e-10)

Modal Equivalent of T. Function $\mathbf{G}(\mathrm{s})_{8 \times 8}$

- Sigma-plot for $8 \times 8 \mathbf{G}(s), \xi=0$
- Full Model order is 1,676 . Modal Equivalent has order 16

Modal Equivalent of T. Function $\mathbf{G}(\mathrm{s})_{8 \times 8}$

- Sigma-plot for $8 \times 8 \mathbf{G}(s), \xi=15 \%$
- Full Model order is 1,676. Modal Equivalent has order 16

Modal Equivalent of T. Function $\mathbf{G}(\mathrm{s})_{8 \times 8}$

- Sigma-plot for $8 \times 8 \mathbf{G}(s), \xi=15 \%$
- Full Model order is 1,676. Modal Equivalent now has order 20, as the 2 missing complex poles have been included

Modal Equivalent of T. Function $\mathbf{G}(\mathrm{s})_{8 \times 8}$

- Sigma-plot for $8 \times 8 \mathbf{G}(s), \xi=15 \%$
- Full Model order is 1,676 . Modal Equivalent has order 39

Modal Equivalent of T. Function $\mathbf{G}(\mathrm{s})_{8 \times 8}$

- Sigma-plot for $8 \times 8 \mathbf{G}(s), \xi=0$
- Full Model order is 1,676. Modal Equivalent has order 39

Step Responses $y_{i j}(s)$ for $39^{\text {th }}$ - order Modal Equivalent for $g_{j j}(s)$

$$
\begin{aligned}
y_{i j}(t) & \cong \frac{R_{i j}^{1}}{\lambda_{1}}\left(e^{\lambda_{1} \cdot t}-1\right)+\frac{R_{i j}^{2}}{\lambda_{2}}\left(e^{\lambda_{2} \cdot t}-1\right)+ \\
& +\frac{R_{i j}^{3}}{\lambda_{3}}\left(e^{\lambda_{3} \cdot t}-1\right)+\cdots+\frac{R_{i j}^{39}}{\lambda_{39}}\left(e^{\lambda_{39} \cdot t}-1\right)
\end{aligned}
$$

where the complex conjugate poles and residues are imbedded in the above equation

$$
\begin{array}{cc}
\lambda_{1}=-.1158+.2445 j & \lambda_{2}=-.1158-.2445 j \\
\lambda_{3}=-.3179+1.0437 j & \lambda_{4}=-.3179-1.0437 j \\
\lambda_{5}, \lambda_{6}, \cdots, \lambda_{38}, \lambda_{39}
\end{array}
$$

Modal Equivalent of T. Function $\mathbf{G}(\mathrm{s})_{8 \times 8}$

- Step responses for $\mathrm{g}_{\mathrm{ij}}(\mathrm{s})$ scalar transfer functions for the full model and the $39^{\text {th }}$-order modal equivalent

> Note: Vertical axes given in rad/s and horizontal axes in seconds

Dominant Poles of $\mathbf{G}(\mathrm{s})_{8 \times 8}$

- Full model order is 1,676. Modal equivalent has order 39. All poles computed by the MDP algorithm

Only poles are pictured (by asterisks) in this figure

Conclusions

- The Multivariable Transfer Function Dominant Pole (MDP) algorithm operates on the state-space or the sparser descriptor system models of large dynamic systems
- MDP is a clever implementation of the Newton Raphson eigensolution algorithm applied to the multivariable transfer function: $\mathbf{G}(s)=\mathbf{C} \cdot(s \mathbf{I}-\mathbf{A})^{-1} \cdot \mathbf{B}+\mathbf{D}$
- Convergence domain of the eigensolutions are larger for poles having high controllability/observability in $\mathbf{G}(s)$
- Subdominant poles of the multivariable $\mathbf{G}(s)$ are obtained by using other initial estimates and eigenvalue deflation techniques
- May automatically produce modal equivalents of $\mathbf{G}(s)$

