2001 IEEE/PES WINTER MEETING COLUMBUS, OH / JAN 28th – FEB 1st

Simultaneous Partial Pole Placement for Power System Oscillation Damping Control

JULIO C. R. FERRAZ (COPPE/UFRJ – CEPEL) NELSON MARTINS (CEPEL) GLAUCO N. TARANTO (COPPE/UFRJ)

COPPE/UFRJ

INTRODUCTION

- Purpose D choose adequate gains for the Power System Stabilizers (PSSs) installed in generators of a test system
- PSSs **Þ** installed to improve the damping factor of electromechanical modes of oscillation
- Stabilization procedure:
 - Determine the system critical modes
 - Determine the machines where the installation of PSSs would be more effective
 - Assess each PSS contribution to the control effort
 - Tune the gains of the PSSs using transfer function residues associated with other information

USING TRANSFER FUNCTION RESIDUES

> The variation of a given feedback gain significantly affects the location of certain system eigenvalues:

GAIN TUNING NEWTON-RAPHSON ALGORITHM

begin

- Calculate eigenvalue and the associated ($\Delta V_{PSS} / \Delta V_{REF}$) transfer function residue;

- Calculate
$$K^{l+1} = K^l + \Delta K$$
, where $\Delta K = \left[\operatorname{Re} \left[R \left[\frac{\Delta V_{PSS}}{\Delta V_{REF}}, I \right] \right] \right]^{-1} \operatorname{Re} [\Delta I];$

- Calculate new λ and new TF residue;
- While the mismatch $(Re[I(K^{l+1})] \mathbf{s}_d)$ is bigger than the tolerance,

increase counter (l=l+1) and return to begin.

end

TEST SYSTEM

- Simplified representation of the Brazilian Southern system
- > Characteristics:
 - Southeastern region represented by an infinite bus
 - → Static exciters with high gain (Ka = 100, Ta = 0.05 s)

CRITICAL OSCILLATORY MODES

Critical electromechanical modes of oscillation

	Real	Imag.	Freq. (Hz)	Damping
λ_1	+0.15309	±5.9138	0.94121	-2.59%
λ_2	+0.17408	±4.6435	0.73904	-3.75%

Parameters related to the phase tuning of the PSSs

Number of lead blocks	Tw (s)	Tn (s)	Td (s)
2	3	0.100	0.010

CRITICAL OSCILLATORY MODES

I₁: Itaipu x (South + Southeast)

7

CRITICAL OSCILLATORY MODES

> l_2 : Southeast x (Itaipu + South)

CONTRIBUTION OF EACH PSS TO THE I SHIFT

- > A change in the gain vector <u>DK</u> will produce shifts in both the real and imaginary parts of the eigenvalues
- The contribution of each PSS to these shifts can be estimated using the matrix of transfer function residues
- > For \mathbf{l}_1 and three PSSs:

$$\begin{bmatrix} \operatorname{Re}[\Delta \boldsymbol{I}_{1}] \\ \operatorname{Im}[\Delta \boldsymbol{I}_{1}] \end{bmatrix} = \begin{bmatrix} \operatorname{Re}\left[R\left(\frac{\Delta V_{PSS1}}{\Delta V_{REF1}}, \boldsymbol{I}_{1}\right) & R\left(\frac{\Delta V_{PSS2}}{\Delta V_{REF2}}, \boldsymbol{I}_{1}\right) & R\left(\frac{\Delta V_{PSS3}}{\Delta V_{REF3}}, \boldsymbol{I}_{1}\right) \end{bmatrix} \begin{bmatrix} \Delta K_{1} \\ \Delta K_{2} \\ \Delta K_{2} \\ \Delta K_{2} \end{bmatrix} \\ = \begin{bmatrix} \operatorname{Re}\left[R\left(\frac{\Delta V_{PSS1}}{\Delta V_{REF1}}, \boldsymbol{I}_{1}\right) & R\left(\frac{\Delta V_{PSS2}}{\Delta V_{REF2}}, \boldsymbol{I}_{1}\right) & R\left(\frac{\Delta V_{PSS3}}{\Delta V_{REF3}}, \boldsymbol{I}_{1}\right) \end{bmatrix} \end{bmatrix} \begin{bmatrix} \Delta K_{1} \\ \Delta K_{2} \\ \Delta K_{3} \end{bmatrix}$$

CONTRIBUTION OF EACH PSS TO THE 1 SHIFT

Normalized contribution of each PSS in the shifts of the real and imaginary parts of the two critical eigenvalues _{Re[Res(Vpss/Vref)]}

Oscillatory Modes

- \mathbf{l}_1 Itaipu mode
- l₂ Southern mode

- **PSS Location**
- Itaipu
- II S. Segredo
- III- Foz do Areia

POLE PLACEMENT – 2 MODES AND 2 PSSS

- Improve the damping factors of two critical oscillatory modes by the use of two PSSs installed in:
 - Itaipu and Salto Segredo
- The gains of the PSSs are computed for a desired shift in the real part of the eigenvalues
- Gain vector <u>DK</u> will be calculated at each Newton iteration using the following relation:

$$\begin{bmatrix} \Delta K_1 \\ \Delta K_2 \end{bmatrix} = \begin{bmatrix} \operatorname{Re} \left[R \left(\frac{\Delta V_{PSS1}}{\Delta V_{REF1}}, I_1 \right) & R \left(\frac{\Delta V_{PSS2}}{\Delta V_{REF2}}, I_1 \right) \right] \\ \operatorname{Re} \left[R \left[R \left(\frac{\Delta V_{PSS1}}{\Delta V_{REF1}}, I_2 \right) & R \left(\frac{\Delta V_{PSS2}}{\Delta V_{REF2}}, I_2 \right) \right] \end{bmatrix}^{-1} \begin{bmatrix} \operatorname{Re} \left[\Delta I_1 \\ \Delta I_2 \right] \end{bmatrix}$$

POLE-ZERO MAP OF [Dw/DV_{REF}]_{2x2}

Map of poles (*) and zeros (0) for the matrix transfer function [Dw/DV_{REF}]_{2x2} with PSSs in Itaipu and S. Segredo

POLE PLACEMENT – 2 MODES AND 2 PSSS

POLE PLACEMENT – 2 MODES AND 2 PSSS

- > The pole location must be carefully chosen
 - Certain pole locations could require high gain values and cause exciter mode instability
- Installation of a third PSS
 - Facilitates the pole placement P more convenient pole-zero map
 - Number of PSSs differs from the number of poles to be placed p pseudo-inverse of a non-square matrix must be computed
 - Algorithm must be modified

PSEUDO-INVERSE ALGORITHM

Problems without unique solution **P** pseudo-inverse algorithm

$$\operatorname{Re}[R]_{mxn} \Delta K_{nx1} = \operatorname{Re}[\Delta I]_{mx1}$$
 m = number of modes
n = number of PSSs

If <u>m < n</u> b the algorithm will produce gain values that ensure a minimum norm for the gain vector

$\min \left\| \underline{\Delta K} \right\|$

If <u>m > n</u> **Þ** the algorithm will produce gain values that ensure a minimum norm for the error vector (solution of the least square problem)

$$\min \|\operatorname{Re}[R]\Delta K - \operatorname{Re}[\Delta I]\|$$

¹⁵ Simultaneous Partial Pole Placement for Power System Oscillation Damping Control

POLE PLACEMENT – 2 MODES AND 3 PSSS

- > Three PSSs installed in:
 - → Itaipu, Salto Segredo and Foz do Areia
- Pseudo-inverse algorithm will provide the solution with minimum norm for the gain vector <u>DK</u>
- > The gains of the PSSs are computed for a desired shift in the real part of the eigenvalues
- Every iteration, the pseudo-inverse algorithm updates and solves the following matrix equation:

$$\begin{bmatrix} \Delta K_1 \\ \Delta K_2 \\ \Delta K_3 \end{bmatrix} = \begin{bmatrix} \operatorname{Re} \left[R \left(\frac{\Delta V_{PSS1}}{\Delta V_{REF1}}, I_1 \right) & R \left(\frac{\Delta V_{PSS2}}{\Delta V_{REF2}}, I_1 \right) & R \left(\frac{\Delta V_{PSS3}}{\Delta V_{REF3}}, I_1 \right) \right] \\ \operatorname{Re} \left[\operatorname{Re} \left[R \left(\frac{\Delta V_{PSS1}}{\Delta V_{REF1}}, I_2 \right) & R \left(\frac{\Delta V_{PSS2}}{\Delta V_{REF2}}, I_2 \right) & R \left(\frac{\Delta V_{PSS3}}{\Delta V_{REF3}}, I_2 \right) \right] \right]^{+} \begin{bmatrix} \operatorname{Re} \left[\Delta I_1 \\ \Delta I_2 \right] \end{bmatrix} \end{bmatrix}$$

POLE-ZERO MAP OF [Dw/DV_{REF}]_{3x3}

Map of poles (*) and zeros (0) for the matrix transfer function [Dw/DV_{REF}]_{3x3} with PSSs in Itaipu, S. Segredo and Foz do Areia

POLE PLACEMENT – 2 MODES AND 3 PSSS

CONCLUSIONS

- Proposed pole placement algorithm:
 - Based on transfer function residues and Newton method
 - Jses generalized inverse matrices to address cases without unique solution
- Inspection of the pole-zero map is very useful
- > Pole placement method
 - Selected pole location can impose constraints that may be unnecessarily severe
 - Results may be not feasible P pole placement may yield undesirably high values for the PSS gains