V SEPOPE Conference, Recife, Brazil, May 1996

Oscillations Damping Analysis and Control Studies of the Future Interconnection Between the North-Northeast and South-Southeast Systems

Nelson Martins (CEPEL) Hermínio J. C. P. Pinto (CEPEL) Carlos A. Gama (ELETRONORTE) Jurandir A. Cavalcanti (CHESF) Roberto L Leoni (ELETROBRÁS) Ronaldo V. Souto (ELETROBRÁS) Nilo J. P. Macedo (FURNAS) Maria José X. Eiras (FURNAS)

Procedures for Stabilization of Electromechanical Oscillations in Interconnected Power Systems

- Application of Damping Controllers
 - Problem Identification
 - ➤ Siting
 - Input Signal Selection and Filtering
 - Closed Loop Control Design
 - Performance Evaluation
 - Adverse Side Effects

Software PacDyn Small Signal Stability Analysis and Control

- 8 Generator Models (Salient and Round Rotors, with saturation)
- Excitation Control Systems (any kind)
- Stabilizing Signals (any kind)
- Governors (any kind)
- 2 Induction Motor Models
- HVDC Links and HVDC/CCC Schemes
- FACTS Devices
 - Static Var Compensators
 - Thyristor Controlled Series Compensators
 STATCOM
- User Defined Controllers (UDC)
- Dynamic Loads

Software PacDyn Small Signal Stability Analysis and Control

- Eigenvalue Computation Algorithms
 - ≻ Full eigensolution (QR and QZ)
 - Partial eigensolution (Simult. Iteration; Dominant Pole Alg.)
- Transfer Function Zeros
- Modal Sensitivities
 - Transfer Function Residues
 - Controlability Factors
 - Observability Factors (Mode Shapes)
 - Participation Factors
- Frequency and Linear Time Response Plots
- Coordinated Controller Design

Geographic Map of the Proposed North-South Interconnection

Courtesy of Eletrobrás/GTOT

Linear Time Response of Tie-Line MW Flow as a Function of the TCSC POD Controller Gain

Linear Time Response of Tie-Line MW Flow as a Function of the TCSC POD Controller Gain

South Exporting 1,000 MW to North

.....

Linear Time Responses of Major System Generators in the Presence of a Single TCSC with POD Controller

....

Inter-Area Eigenvalue Locus as a Function of the Gain of a Single TCSC POD Controller

Notation: Symbol 'a' relates to South to North, 1,000 MW Flow Symbol 'r' relates to North to South, 1,000 MW Flow

Eigenvalue Spectrum of the 50,000 MW, Brazilian North-South Interconnection (with just one TCSC POD Controller)

Root-Loci Varying the TCSC POD Controller Gain

.....

Tie-Line Small-Signal Power Oscillations for Original and Enhanced PSSs in Xingó and P. Afonso IV

Small-Signal Power Oscillations at North-South Intertie

North Exporting 1,000 MW to South

Enhanced PSSs in Xingó, P. Afonso IV, Itaparica and Sobradinho

Small-Signal Power Oscillations at North-South Intertie

Small-Signal Power Oscillations at North-South Intertie

Conclusions

- Power Oscillation Damping (POD) controller on a TCSC located along the North-South Inter-Tie was shown to effectively damp the Brazilian 0.17 Hz North-South mode
- Enhanced PSSs in four Northeastern power plants can also effectively damp this oscillation
- Small signal analysis software is very effective for coordinated stabilizer design
- Good graphics and program interactivity makes the engineer's task much easier in complex engineering studies
- Step responses of linearized system model, as demonstrated in this paper, when used for preliminary comparison of alternative damping solutions, may speed-up oscillation damping control studies (50 times faster than transient stability solutions)